

Practical Exercises (Robyn)

Overview of This Section

- Why is developmental validation different from internal validation?
- Who performs developmental validation and why?
- · What types of studies must be performed?
- For genetic markers, how do you address inheritance, detection of polymorphisms, species specificity, accuracy, sensitivity, stability, reproducibility, optimization of reactions, stochastic effects, multiplexes, product detection, population studies and statistical analysis, and mixture analysis?
- What are some factors that impact reliability of DNA typing and should be carefully examined?

DNA Advisory Board Quality Assurance Standards

Section 2. Definitions

 (ff) Validation is a process by which a procedure is evaluated to determine its efficacy and reliability for forensic casework analysis (DNA analysis) and includes:

Manufacturer

- (1) Developmental validation is the acquisition of test data and determination of conditions and limitations of a new or novel DNA methodology for use on forensic samples;
- (2) Internal validation is an accumulation of test data within the laboratory to demonstrate that established methods and procedures perform as expected in the laboratory.

Forensic Lab

Differences between Developmental and Internal Validation

- Detail of the studies
- Peer-reviewed publication
 - journals do not consider internal validation studies novel and are not likely to publish them

Who Performs Developmental Validation?

- Who? (SWGDAM Revised Validation Guidelines 1.2.1)
 - Manufacturer
 - Technical Organization
 - Academic Institution
 - Government Laboratory
 - Other Party (examples?)
- Are there potential conflicts of interest with any of these groups performing developmental validation?

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

Examples of Delay in Publication

ProfilerPlus/COfiler

- Kits released in Dec 1997/May 1998 with technical manuals
- Publication in Jan 2002 of developmental validation (submitted in July 2000)

Identifiler

- Kit released in July 2001 with technical manual
- Publication in Nov 2004 of developmental validation (submitted in June 2002)

· Quantifiler

- Kit released in Nov 2003 with technical manual
- Publication in July 2005 of developmental validation

PowerPlex 16

- Kit released in May 2000 following presentations at meetings (technical manual does not describe studies performed)
- Publication in July 2002 of developmental validation

SWGDAM Revised Validation Guidelines The validation process identifies aspects of a procedure that are critical and must be carefully controlled and monitored. What are some critical aspects of STR typing?

- Ask for responses from participants
- What factors need to be controlled and monitored in order to obtain reliable STR results?
 - Write down and see if validation studies address these factors...

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

Publication Required

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm Documentation for Developmental Validation Studies

- 1.2.1.2 Peer-reviewed publication of the results of developmental validation studies is encouraged. However, technologies or procedures may be implemented without peer-reviewed publication if the results of developmental studies have been disseminated to the scientific community for review and evaluation through multiple ways, such as presentation at a scientific meeting or publication in a technical manual.
- Is a presentation at a scientific meeting sufficient? What are some challenges with this form of reporting on validation studies?
- Is information from a technical manual sufficient (e.g., Quantifiler manual)?

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.1.1 Inheritance The mode of inheritance of DNA markers demonstrated through family studies. Examination of a CEPH family looking for Mendelian inheritance patterns...

055		О	Illus M, S	trate p 1, S2,	arenta D1, S	<mark>l allele</mark> 5 <mark>—all</mark>	transf possib	er with le corr	D13S Ibinatio	317 F, ons se	en E		JO
Pedi	gree 13	293		Б	Ь	Ь	Ъ	Ь	Ь	Ъ	-0		
Marker	PGF	PGM	F	S1	S2	D1	D2	S3	S4	S5	м	MGF	MGM
CSF1PO	11,12	10,10	10,12	12,13	12,12	10,12	10,12	12,13	12,12	12,12	12,13	12,13	10,13
FGA	20,22	20,21	20,20	20,21	20,24	20,24	20,24	20,24	20,24	20,21	21,24	21,24	21,22
TH01	9.3,9.3	7,9	9,9.3	8,9	8,9.3	8,9	8,9	8,9	8,9	8,9	8,8	6,8	7,8
TPOX	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,9
VWA	16,16	17,19	16,17	16,17	16,17	17,17	16,16	16,17	17,17	16,17	16,17	16,16	16,17
D3S1358	14,15	17,18	14,18	15,18	16,18	14,15	14,15	15,18	15,18	16,18	15,16	15,16	15,17
D5S818	10,12	10,12	10,12	11,12	12,13	10,13	10,11	12,13	11,12	12,13	11,13	11,12	9,13
D7S820	13,13	9,11	9,13	9,12	9,9	9,9	9,13	9,12	12,13	12,13	9,12	9,11	9,12
D8S1179	12,13	11,13	13,13	13,13	10,13	10,13	13,13	10,13	13,13	13,13	10,13	10,13	13,13
D13S317	9,13	9,10	9,10	10,12	10,11	9,12	10,11	10,11	10,12	9,11	11,12	11,12	11,12
D168539	12,13	12,13	13,13	12,13	13,13	12,13	13,13	12,13	13,13	13,13	12,13	9,13	12,12
D18S51	13,13	13,14	13,13	12,13	13,13	13,13	12,13	13,13	13,13	13,13	12,13	13,17	12,12
D21S11	29, 29	28, 29	29, 29	29, 32.2	29, 32.2	29, 32.2	29, 32.2	29, 32.2	29, 32.2	29, 32.2	32.2, 32.2	30, 32.2	28, 32.2
AMEL	X,Y	X,X	X,Y	X,Y	X,Y	х,х	х,х	X,Y	X,Y	X,Y	X,X	X,Y	X,X

Mutati	on Rates for		R Loci	J.M. Butler (2005) J. Foren	sic Sci., in press
STR System	Maternal Meioses (%)	Paternal Meioses (%)	Number from either	Total Number of Mutations	Mutation Rate
CSF1PO	95/304,307 (0.03)	982/643,118 (0.15)	410	1,487/947,425	0.16%
FGA	205/408,230 (0.05)	2,210/692,776 (0.32)	710	3,125/1,101,006	0.28%
TH01	31/327,172 (0.009)	41/452,382 (0.009)	28	100/779,554	0.01%
TPOX	18/400,061 (0.004)	54/457,420 (0.012)	28	100/857,481	0.01%
VWA	184/564,398 (0.03)	1,482/873,547 (0.17)	814	2,480/1,437,945	0.17%
D3S1358	60/405,452 (0.015)	713/558,836 (0.13)	379	1,152/964,288	0.12%
D5S818	111/451,736 (0.025)	763/655,603 (0.12)	385	1,259/1,107,339	0.11%
D7S820	59/440,562 (0.013)	745/644,743 (0.12)	285	1,089/1,085,305	0.10%
D8S1179	96/409,869 (0.02)	779/489,968 (0.16)	364	1,239/899,837	0.14%
D13S317	192/482,136 (0.04)	881/621,146 (0.14)	485	1,558/1,103,282	0.14%
D16S539	129/467,774 (0.03)	540/494,465 (0.11)	372	1,041/962,239	0.11%
D18S51	186/296,244 (0.06)	1,094/494,098 (0.22)	466	1,746/790,342	0.22%
D21S11	464/435,388 (0.11)	772/526,708 (0.15)	580	1,816/962,096	0.19%
Penta D	12/18,701 (0.06)	21/22,501 (0.09)	24	57/41,202	0.14%
Penta E	29/44,311 (0.065)	75/55,719 (0.135)	59	163/100,030	0.16%
D2S1338	15/72,830 (0.021)	157/152,310 (0.10)	90	262/225,140	0.12%
D19S433	38/70,001 (0.05)	78/103,489 (0.075)	71	187/173,490	0.11%
SE33 (ACTBP2)	0/330 (<0.30)	330/51,610 (0.64)	None reported	330/51,940	0.64%

			1
Locus Name	Chromosomal Location	Physical Position *	
CSF1PO	5q33.1 c-fms proto-oncogene, 6 th Intron	Chr 5 149.484 Mb	Position of Each
FGA	4q31.3 alpha fibrinogen, 3≋ intron	Chr 4 156.086 Mb	in Human Genome
TH01	11p15.5 tyrosine hydroxylase, 1st intron	Chr 11 2.156 Mb	
TPOX	2p25.3 thyroid peroxidase, 10 th intron	Chr 2 1.436 Mb	
VWA	12p13.31 von Willebrand Factor, 40 th Intron	Chr 12 19.826 Mb	Peview article on core STE
D351358	3p21.31	Chr 3 45.543 Mb	loci genetics and genomics
D55818	5q23.2	Chr 5 123.187 Mb	to be published this fall
D75820	7q21.11	Chr 7 83.401 Mb	
D851179	8q24.13	Chr 8 125.863 Mb	
D135317	13q31.1	Chr 13 80.52 Mb	
D165539	16q24.1	Chr 16 86.168 Mb	
D18551	18q21.33	Chr 18 59.098 Mb	
D21511	21q21.1	Chr 21 19.476 Mb	From Table 5.2, Forensic DNA Typing, 2 nd Edition, p. 96 (J.M. Butler, 2005)

2.1.4 **Polymorphism** Type of variation analyzed.

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.3 Sensitivity studies

- 2.3 Sensitivity studies: When appropriate, the range of DNA quantities able to produce reliable typing results should be determined.
- · What dilutions should be attempted?

WGDAM Revised Validation Guidelines ttp://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.4 Stability studies

2.4 Stability studies: The ability to obtain results from DNA recovered from biological samples deposited on various substrates and subjected to various environmental and chemical insults has been extensively documented. In most instances, assessment of the effects of these factors on new forensic DNA procedures is not required. However, if substrates and/or environmental and/or chemical insults could potentially affect the analytical process, then the process should be evaluated using known samples to determine the effects of such factors.

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.5 Reproducibility

2.5 Reproducibility: The technique should be evaluated in the laboratory and among different laboratories to ensure the consistency of results. Specimens obtained from donors of known types should be evaluated.

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.6 Case-type samples: The ability to obtain reliable results should be evaluated using samples that are representative of those typically encountered by the testing laboratory. When possible, consistency of typing results should be demonstrated by comparing results from the previous procedures to those obtained using the new procedure.

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.7 Population studies

2.7 Population studies: The distribution of genetic markers in populations should be determined in relevant population groups. When appropriate, databases should be tested for independence expectations.

- How many samples are required in a population study?
- · What statistical tests need to be performed?

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

Population Data Comparison with OmniPop

- OmniPop (Excel macro created by Brian Burritt of the San Diego Police Department) – compares allele frequencies across published population data
- http://www.cstl.nist.gov/biotech/strbase/populationdata.htm

STR Locus	Profile Computed	Number of Populations Used	Cumulative Profile Frequency Range (1 in)	Cumulative Profile Frequency against U.S. Caucasians (Appendix II)
D3S1358	16,17	166	5.24 to 62.6	9.19
VWA	17,18	166	37.6 to 1,080	81.8
FGA	21,22	166	737 to 119,000	1,010
D8S1179	12,14	166	8,980 to 5,430,000	16,400
D21S11	28,30	166	165,000 to 248,000,000	186,000
D18S51	14,16	166	3.85 x 106 to 2.68 x 1010	4.88 x 106
D5S818	12,13	166	2.28 x 107 to 4.22 x 1011	4.51 x 10 ⁷
D13S317	11,14	166	4.32 x 108 to 1.69 x 1013	1.38 x 10 ⁹
D7S820	9,9	166	1.17 x 1010 to 2.98 x 1016	4.22 x 1010
D16S539	9,11	97	4.06 x 1011 to 1.11 x 1018	5.82 x 10 ¹¹
TH01	6,6	97	9.30 x 1012 to 1.45 x 1019	1.05 x 10 ¹³
TPOX	8,8	97	3.33 x 1013 to 1.54 x 1020	3.63 x 1013
CSF1PO	10,10	97	3.43 x 1014 to 2.65 x 1021	7.43 x 10 ¹⁴

Allele				S Allele an as 5/2N recom Resea The E Evide	frequencies dence terisk (*) are belo ninimum allele t imended by the N arch Council repo ivaluation of Fore- nce published in	w the hreshold lational rt (NRCII) nsic DNA 1996.
JF	5 48(4):908-911	3F3 49(0). 138	1-1365	African	African	
D3S1358	Caucasian	Caucasian		American	American	
	N= 302	N= 7,636		N=258	N= 7,602	
Allele			Allele			
11	0.0017*	0.0009	11		0.0003*	
12	0.0017*	0.0007	12		0.0045	
13	-	0.0031	13	0.0019*	0.0077	
Most 14	0.1027	0.1240	14	0.0892	0.0905	
common 15	0.2616	0.2690	15	0.3023	0.2920	
allele 15.2			15.2	0.0019*	0.0010	
16	0.2533	0.2430	16	0.3353	0.3300	
17	0.2152	0.2000	17	0.2054	0.2070	
18	0.15232	0.1460	18	0.0601	0.0630	
19	0.01160	0.0125	19	0.0039*	0.0048	
20	0.0017*	0.0001*	20			
					-	

		J.M. Butler (2005) J. Forensic Sci., in press
STR Locus	Reported	264 variant alleles reported as of Apr 2005 on STRBase
CSF1PO	11	5, 7.3, 8.3, 9.1, 9.3, 10.1, 10.2, 10.3, 11.1, 12.1, 16
FGA	69	$\begin{array}{c} 122, 132, 14, 143, 15, 153, 16, 161, 162, +17, 17, 172, 182, 161, 192, 193, 201, 202, 203, 211, 212, 213, 222, 222, 232, 232, 23$
TH01	7	4, 7.3, 8.3, 9.1, 10.3, 11, 13.3
TPOX	7	4, 5, 7.3, 13.1, 14, 15, 16
VWA	6	16.1, 18.3, 22, 23, 24, 25
D3S1358	18	8, 8.3, 9, 10, 11, 15.1, 15.2, 15.3, 16.2, 17.1, 17.2, 18.1, 18.2, 18.3, ">19", 20, 20.1, 21.1
D5S818	5	10.1, 11.1, 12.3, 17, 18
D7S820	22	5, 5.2, 6.3, 7.1, 7.3, 8.1, 8.2, 8.3, 9.1, 9.2, 9.3, 10.1, 10.3, 11.1, 11.3, 12.1, 12.2, 12.3, 13.1, 14.1, 15, 16
D8S1179	4	7, 15.3, 18, 20
D13S317	10	5, 6, 7, 7.1, 8.1, 11.1, 11.3, 13.3, 14.3, 16
D16S539	10	6, 7, 9.3, 11.3, 12.1, 12.2, 13.1, 13.3, 14.3, 16
D18S51	30	7, 8, 9, 11.2, 12.2, 12.3, 13.1, 13.3, 14.2, 15.1, 15.2, 16.1, 16.2, 16.3, 17.2, 17.3, 18.1, 18.2, 19.2, 20.1, 20.2, 21.2, 22.1, 22.2, 23.2, 24.2, 27, 28.1, 28.3, 40
D21S11	24	24.3, 25.1, 25.2, 25.3, 26.2, 27.1, 27.2, 28.1, 28.3, 29.1, 29.3, 30.3, 31.1, 31.3, 32.1, 33.1, 34.1, 34.3, 35.1, 36.1, 36.2, 37, 37.2, 39
Penta D	14	6, 6, 4, 7.1, 7.4, 9, 4, 10.3, 11.1, 11.2, 12.2, 12.4, 13.2, 13.4, 14.1, 14.4
Penta E	13	9.4, 11.4, 12.1, 12.2, 13.2, 14.4, 15.2, 15.4, 16.4, 17.4, 18.4, 19.4, 23.4
D2S1338	3	13, 23.2, 23.3
D19S433	11	6.2, 7, 8, *<9°, 11.1, 12.1, 13.2, 18, 18.2, 19.2, 20
SE33	0	None reported yet in STRBase

STR Locus	Number Reported	JM. Buter (2005) J. Forensic Sci., in press 62 tri-allelic patterns reported as of April 2005 on STRBase
CSF1PO	2	9/11/12; 10/11/12
FGA	10	19/20/21; 19/22/23; 19/24/25; 20/21/22; 20/21/24; 20/23/24; 21/22/23; 21/25/26; 22/24/25; 22.2/23/23.2
TH01	1	7/8/9
трох	13	6/8/10; 6/9/10; 6/10/11; 6/10/12; 7/9/10; 7/10/11; 8/9/10; 8/10/11; 8/10/12; 8/11/12; 9/10/11; 9/10/12; 10/11/12
VWA	8	11/16/17; 12/18/19; 14/15/17; 14/15/18; 14/16/18; 14/17/18; 15/16/17; 18/19/20
D3S1358	4	15/16/17; 15/17/18; 16/17/19; 17/18/19
D5S818	2	10/11/12; 11/12/13
D7S820	2	8/9/12; 8/10/11
D8S1179	5	10/12/13; 10/12/15; 12/13/14; 12/13/15; 13/15/16
D13S317	3	8/11/12; 10/11/12; 10/12/13
D16S539	1	12/13/14
D18S51	7	12/13/15; 12/14/15; 12/16/17; 14/15/22; 15/16/20; 16/17/20; 19/22.2/23.2
D21S11	4	28/29/30; 28/30.2/31.2; 29/31/32; 30/30.2/31
Penta D	0	None reported yet in STRBase
Penta E	0	None reported yet in STRRase
D2S1338	0	None report nttp://www.csti.nist.gov/biotech/strbase/tri_tab.ntm
D19S433	0	None reported yet in STRBase
SE33	0	None reported yet in STRBase

2.9 Precision and accuracy

2.9 Precision and accuracy: The extent to which a given set of measurements of the same sample agree with their mean and the extent to which these measurements match the actual values being measured should be determined.

 How many samples should be examined in a precision study?

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

2.10 PCR-based procedures

- 2.10 PCR-based procedures: **Publication of the** sequence of individual primers is not required in order to appropriately demonstrate the accuracy, precision, reproducibility, and limitations of PCR-based technologies.
- Single biggest change in the revised validation guidelines...
- · What are advantages of having the primer sequences?

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

- 2.10.1 The reaction conditions needed to provide the required degree of specificity and robustness must be determined. These include thermocycling parameters, the concentration of primers, magnesium chloride, DNA polymerase, and other critical reagents.
- 2.10.2 The potential for differential amplification among loci, preferential amplification of alleles in a locus, and stochastic amplification must be assessed.
- 2.10.3 When more than one locus is coamplified, the effects of coamplification must be assessed (e.g., presence of artifacts).
- 2.10.4 Positive and negative controls must be validated for use.

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

- 2.10.5 Detection of PCR product
 - 2.10.5.1 Characterization without hybridization
 - 2 10.5 1.1 When PCR product is characterized directly, appropriate measurement standards (qualitative and/or quantitative) for characterizing the alleles or resulting DNA product must be established.
 - 2.10.5.1.2 When PCR product is characterized by DNA sequencing, appropriate standards for characterizing the sequence data must be established.
 - 2.10.5.2 Characterization with hybridization
 - 2.10.5.2.1 Hybridization and wash conditions necessary to provide the required degree of specificity must be determined.
 - 2.10.5.2.2 For assays in which the probe is bound to the matrix, a mechanism must be employed to demonstrate whether adequate amplified DNA is present in the sample (e.g., a probe that reacts with an amplified allele(s) or a product yield gei).

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

What is the goal of validation studies involving a new STR typing kit

- Stutter product amounts
- Why?: aids in mixture interpretation guidelines (how often does your laboratory call peaks below 15% of an adjacent allele?)
- Precision studies

 Why?: aids in defining allele bin windows (in reality does anyone ever change to ±0.5 bp from the Genotyper macro?)
- ever change to ±0.5 bp from the Genotyper macro?)

 Sensitivity studies
- Why?: aids in defining lower and upper limits
- Mixture studies
- Why?: aids in demonstrating the limits of detecting the minor component
- Concordance studies
 - Why?: to confirm that new primer sets get the same results as original primer sets – potential of polymorphism causing allele dropout...
- · Peak height ratio studies

Appropriate Documentation...

- Publications in the Peer-Reviewed Literature
 - How to find them...How to read and critic them...
 - How to read and child them...
- In terms of documentation, is the community doing too
 much? Too little?
 - Discuss benefit of STRBase Validation homepage
- Should we be requesting more information from the manufacturers of commercial kits in terms of developmental validation studies?

FBI DNA Quality Assurance Audit Developmental Validation Scorecard

Discussion

Developmental validation must precede the introduction of a novel methodology for forensic DNA analysis. A novel methodology may include an existing technology or treating procedure that has been developed for a specific technology (e.g., medical testing, genetic analysis) that is not currently applied to forense: DNA analysis. Citations in peer-reviewed scientific journals that provide the underlying scientific basis for a novel methodology should be available.

		Yes	No	N/A
8.1.2	Have novel forensic or database DNA methodologies used by the laboratory undergone developmental validation to ensure the accuracy, precision, and reproducibility of the procedure?	_	_	_
8.1.2.1	Is there documentation and is it available that defines and characterizes each locus?			
8.1.2.2(FO)	Have species' specificity, sensitivity, stability, and mixture studies been conducted?			
8.1.2.3(FO)	Does the laboratory have access to a population database that is documented and available for use in population statistics?	—	—	—
8.1.2.3.1(FO-a)	Where appropriate, has the database been tested for independence expectations?	_	_	_
8.1.2.3.1(FO-b)	Does the database information include allele and frequency distributions for the locus or loci obtained from relevant populations?	_	—	

Locus	Increase in Detected Size (bp)	Range of Standard Deviation of Alleles for Identifiler Kit (bp)	Range of Standard Deviation of Alleles Previous Kit (bp)
CSF1PO	26	0.08-0.13*	$0.03 - 0.10^{\dagger}$
0281338	16	0.05-0.12*	$0.02 - 0.15^{\ddagger}$
D13S317	12	0.05-0.09*	$0.02 - 0.09^{\$}$
D16S539	23	0.06-0.09*	$0.01 - 0.08^{\ddagger}$
POX	7	0.03-0.08*	$0.02 - 0.07^{\dagger}$

[Works Re	hop Lit	Prac eratur	e Sur ental V	al Ex mmar /alidatio	y on Efforts	#1
	Numbers of S	samples I	kun in De	evelop	nental	validation Stud	lies
Kit/System	Reference	Sensitivity	Precision	Stutter	Mixture	Peak Height Ratio	Non-Probative Cases
PP16	Krenke et al. (2002)						
Profiler Plus	Holt et al. (2002)						
Identifiler	Collins et al. (2004)						
SGM Plus	Cotton et al. (2000)						
Alu qPCR	Nicklas et al. (2003)						
Quantifiler	Green et al. (2005)						
mtDNA	Wilson et al. (1995)						
ABI 310	Lazaruk et al. (1998)						
ABI 377	Fregeau et al. (1999)						
ABI 3100	Koumi et al. (2004)						
TrueAllele	Kadash et al. (2004)						
PowerPlex Y	Krenke et al. (2005)						
Y-PLEX 12	Shewale et al. (2004)						
DNA IQ	Greenspoon et al. (2004)						

Validation	Summary Sheet for PowerPlex Y	
Study Completed (17 studies done)	Description of Samples Tested (performed in 7 labs and Promega)	#Run
Single Source (Concordance)	5 samples x 8 labs	40
Mixture Ratio (male:female)	6 labs x 2 M/F mixture series x 11 ratios (1:0,1:1,1:10,1:100,1:300,1:1000,0.5:300, 0.25:300,0.125:300, 0.0625:300, 0.03:300 ng M:F)	132
Mixture Ratio (male:male)	6 labs x 2 M/M mixtures series x 11 ratios (1:0, 19:1, 9:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:9, 1:19, 0:1)	132
Sensitivity	7 labs x 2 series x 6 amounts (1/0.5/0.25/0.125/0.06/0.03)	84
Non-Human	24 animals	24
NIST SRM	6 components of SRM 2395	6
Precision (ABI 3100 and ABI 377)	10 ladder replicates + 10 sample replicated + [8 ladders + 8 samples for 377]	36
Non-Probative Cases	65 cases with 102 samples	102
Stutter	412 males used	412
Peak Height Ratio	N/A (except for DYS385 but no studies were noted)	
Cycling Parameters	5 cycles (28/27/26/25/24) x 8 punch sizes x 2 samples	80
Annealing Temperature	5 labs x 5 temperatures (54/58/60/62/64) x 1 sample	25
Reaction volume	5 volumes (50/25/15/12.5/6.25) x [5 amounts + 5 concentrations]	50
Thermal cycler test	4 models (480/2400/9600/9700) x 1 sample + [3 models x 3 sets x 12 samples]	76
Male-specificity	2 females x 1 titration series (0-500 ng female DNA) x 5 amounts each	10
TaqGold polymerase titration	5 amounts (1.38/2.06/2.75/3.44/4.13 U) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Primer pair titration	5 amounts (0.5x/0.75x/1x/1.5x/2x) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Magnesium titration	5 amounts (1/1.25/1.5/1.75/2 mM Mg) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Krenke et al. (2005) Forensie	c Sci. Int. 148:1-14 TOTAL SAMPLES EXAMINED	1269

tudy Completed (26 experiments cited)	Description of Samples Tested	TOTA
ingle Source (Concordance)	[50 male + 30 female] mentioned in materials and methods; IPATIMUP, Humboldt shared samples	
ixtures		
xture Ratio (male:female)	6 ratios (1:0/1:100/1:200/1:400/1:600/1:800) x 1 series (0.5 ng male with variable female DNA)	6
xture Ratio (male:male)	6 ratios (1:0/1:5/1:10/1:20/1:30/1:40) x 1 series (0.2 ng male-1 with increasing level of male-2)	6
nsitivity	15 males x 5 amounts (0.05/0.1/0.2/0.5/1/2 ng)	75
n-Human	9 mammals + 5 bacteria/virus	14
ST SRM	6 components of SRM 2395	6
ecision (ABI 310, 377, 3100)	50 ladders (310) + 49 ladders (377) + 58 ladders (3100)	157
n-Probative Cases	19 cases (comprising 45 samples by my calculations)	45
utter	34 males (part of another study?)	34
sak Height Ratio	NA	
cling Parameters	3 males x 4 cycles (28/30/32/34) x 1 amount (1 ng)	12
nnealing Temperature	1 sample x 5 temperatures (56/58/60/62/64) x 1 amount (1 ng)	5
oficiency		
ubstrate	SEE Y-PLEX 6 and Y-PLEX 5 papers	
wronment	SEE Y-PLEX 6 and Y-PLEX 5 papers	
arious tissues		
action volume	3 volumes (12.5/25/50) x 4 males x 1 amount (1 ng)	12
ermal cycler test	3 models (9600/9700/MJ PTC-200) x 1 sample	3
ale-specificity	46 unrelated female samples ranging up to 700 ng in amount	46
qGold polymerase titration	4 amounts (0.625/1.25/2.5/3.75 U) x 1 sample	4
imer pair titration	3 amounts (0.25x/0.5x/1x) x 1 sample	3
agnesium titration	at least 4 amounts (1.0/1.5/1.8/2.2 mM Mg) x 1 sample	4
	TOTAL SAMPLES EXAMINED	432

STANDARD 8.1 The laboratory shall use validated methods and procedures for forensic casework analyses (*DNA analyses*).

8.1.1 Developmental validation that is conducted shall be appropriately documented.

8.1.3 Internal validation shall be performed and documented by the laboratory.

Introduction DNA is inclutionally stered in water or a buffered solution, such as TE* (DuMT Tra-BCL 0 LinM EDTA [pH 80]). DNA stored in TE* buffer is more shifted out in the buffering capacity of Din and the presence of EDTA (1). For this masses, the 10X Petaser Pair Mex for the

plification TE+ buffer are incue so reater (data not shown the use of TE+ by statements)

Prepared by John M. Butler