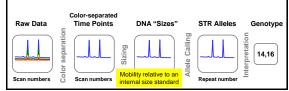
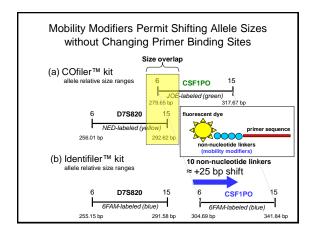


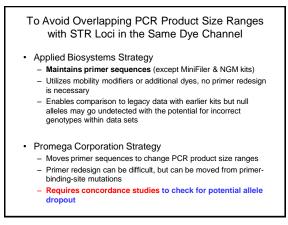
What topic are you most interested in learning about today? (select only one)

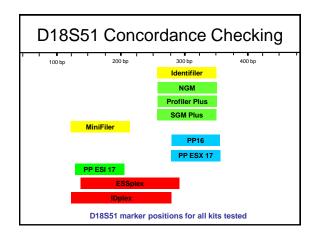
- 1. Troubleshooting
- 2. Rapid DNA testing
- 3. Expanded CODIS core loci
- 4. ABI 3500
- 5. Promega-ABI lawsuit over STRs

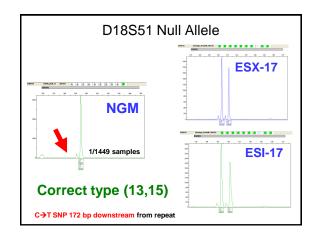
Planned Presentation Outline

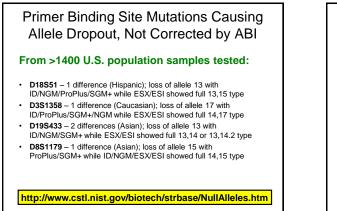

- · STR measurement issues
- Expanded CODIS core loci
 - European STR locus expansion in 2009
 - Our recent Forensic Science Review article
- New STR kits & recent Promega-ABI lawsuit
- · CE fundamentals & troubleshooting issues
- ABI 3500 differences with ABI 3130
- · Efforts towards rapid PCR & DNA testing

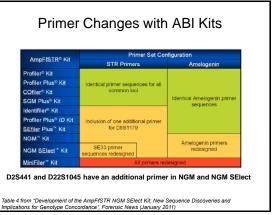

CE Peak Position is Primarily Determined by ... (select only one)

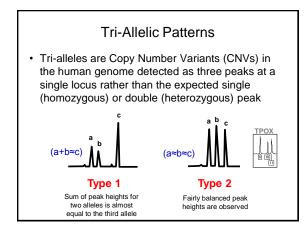

- 1. DNA length
- Mobility (time from injection to detection)

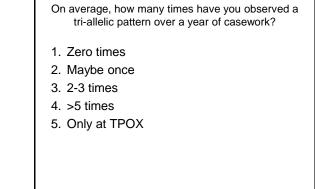

What is Being Measured with STR Alleles during CE Separation

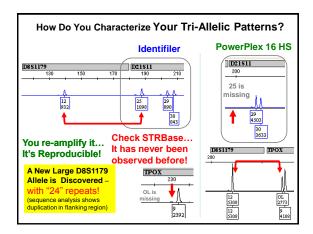

- Mobility of a PCR product with a fluorescent tag is being measured
- Mobility is the time it takes for the DNA molecule to move from the injection point to the detection point
- Mobility modifiers are used in some ABI STR kits
 Identifiler has five loci with mobility modifiers

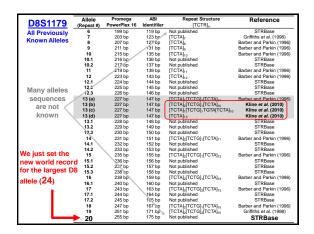


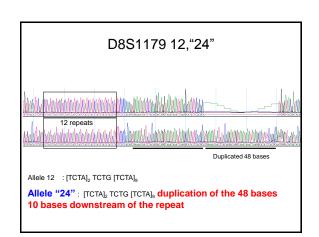


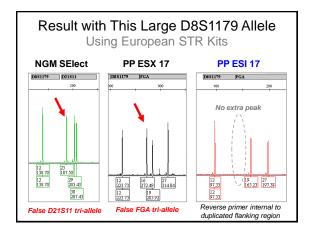




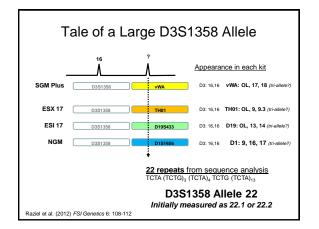


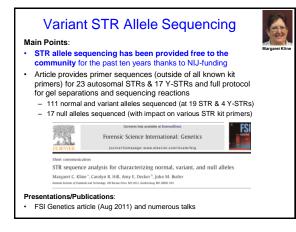




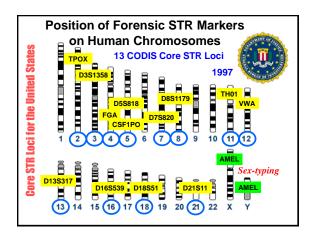


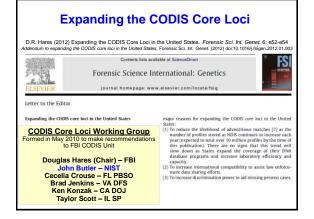
Slide from Steven Myers, CA DOJ Frequency of	Data from Misson		
	Locus	Observations	1 in
 Database Size: 	D3S1358	2	35,000
	VWA	10	6,900
69,000	FGA	11	6,300
	D8S1179	2	35,000
 Overall Average 	D21S11	9	7,700
Occurrence:	D18S51	3	23,000
	D5S818	1	69,000
1 in 1,000	D13S317	4	17,000
	D7S820	0	
Note:	D16S539	3	23,000
This is Steven's	TH01	0	
summary of Missouri's data.	TPOX	9	7,700
You won't find this	CSF1PO	1	69,000
table on STRBase.	Penta D	3	23,000
	Penta E	10	6,900
	Combined	68	1,000

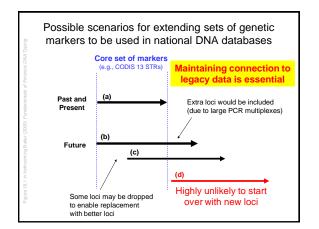


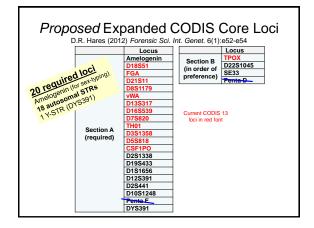

Recommendations for Tri-Allelic Patterns

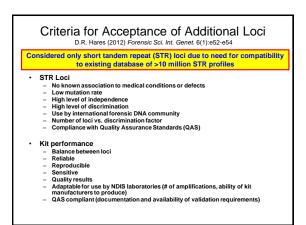
- Re-injecting a sample with the same STR kit does not help answer the question
- Run a different STR kit with loci in different configurations
- This duplicate testing will help confirm that you have a true tri-allele rather than an extremely small or large allele that is out of the STR kit defined allele bins for a locus
- Recording tri-allelic patterns correctly improves database searching comparability when states are using different STR kits

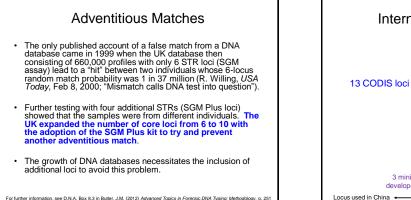


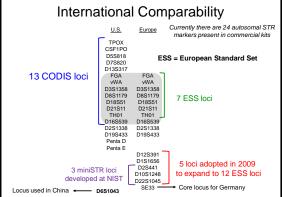

How do you current handle variant alleles that fall "off-ladder"?

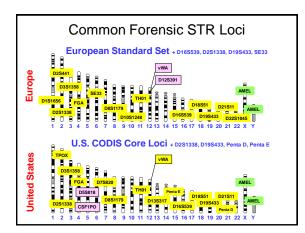

- 1. Accept first result obtained
- 2. Re-inject only
- 3. Re-amplify sample and re-test
- 4. Send sample to NIST for allele sequencing
- 5. Something else

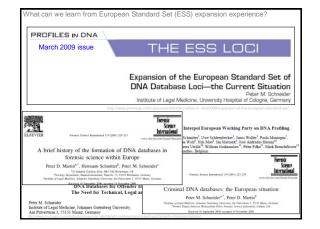


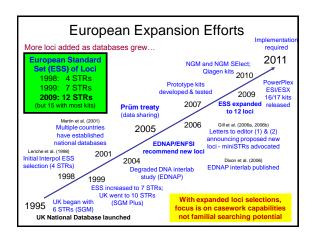


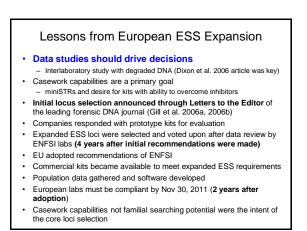


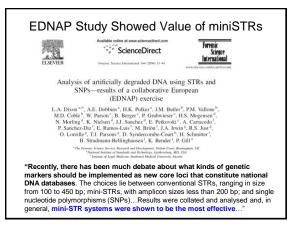






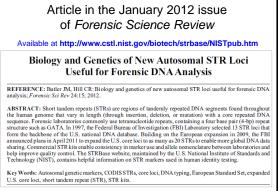

 To increase discrimination power to aid missing persons cases





	Data Driven Decisi	ons
ELSEVIER	Available online at www.sciencedirect.com	Forensic Science International www.ebevirg.com/focate/forecline
The ev	olution of DNA databases—Recom for new European STR loci	imendations
Peter C	Gill ^{a,*} , Lyn Fereday ^b , Niels Morling ^c , Peter M	1. Schneider ^d
" Depart	^b Forensic Science Service, Birminghum, UK ^b Forensic Science Service, London, UK ment of Forensic Genetics, Institute of Forensic Medicine, University of Colog ^d Isuitate of Legal Medicine, University of Cologne, Germany	penhagen, Denmark
	Received 25 May 2005; accepted 26 May 2005 Available online 5 July 2005	
in Glasgow, UK, it Europe should tal that chance of ob	t meeting by the ENFSI and EDNAP gro was unanimously agreed that the proces ke account of recent work that unequi taining a result from a degraded sam (mini-STRs) were analysed"	ss of standardization within ivocally demonstrated

Characterizing New STR Loci


ph Buller Becky Hill

Main Points:

- In April 2011, the FBI announced plans to expand the core loci for the U.S. beyond the current 13 CODIS STRs
- Our group is collecting U.S. population data on new loci and characterizing them to aid understanding of various marker combinations
- We are collecting all available information from the literature on the 24 commonly used autosomal STR loci

Presentations/Publications:

- AAFS 2011 presentation
- Hill et al (2011) FSI Genetics 5(4): 269-275
- Hares (2012) Expanding the U.S. core loci... FSI Genetics 6(1): e52-e54
- Butler & Hill (2012) Forensic Sci Rev 24(1): 15-26

Discusses the 24 autosomal STR loci available in commercial kits

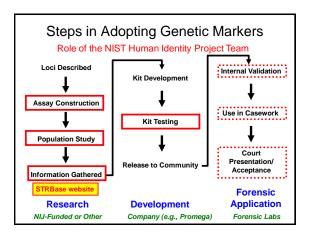
	The 11	STR Lo	ci Beyond	the CODIS	S 13
	STR Locus				# Alleles*
	D2S1338	2q35	TGCC/TTCC	10 to 31	40
	D19S433	19q12	AAGG/TAGG	5.2 to 20	36
	Penta D	21q22.3	AAAGA	1.1 to 19	50
	Penta E	15q26.2	AAAGA	5 to 32	53
oci	D1S1656	1q42	TAGA	8 to 20.3	25
ean	D12S391	12p13.2	AGAT/AGAC	13 to 27.2	52
new European	D2S441	2p14	TCTA/TCAA	8 to 17	22
≥	D10S1248	10q26.3	GGAA	7 to 19	13
5 ne	D22S1045	22q12.3	ATT	7 to 20	14
	SE33	6q14	AAAG‡	3 to 49	178
	D6S1043	6q15	AGAT/AGAC	8 to 25	25
				dix 1, J.M. Butler (20 les have complex rep	

	Allele (Repeat #)	Promega ESX 17	Promega ESI 17	ABI NGM	Repeat Structure	Reference
	8	133 bp	222 bp	171 bp	[TAGA] ₈ [TG] ₅	Phillips et al. (2010)
	9	137 bp	226 bp	175 bp	[TAGA] ₉ [TG] ₅	Phillips et al. (2010)
	10 (a)	141 bp	230 bp	179 bp	[TAGA] ₁₀ [TG] ₅	Lareu et al. (1998)
2	10 (b)	141 bp	230 bp	179 bp	[TAGA] ₁₀ TAGG[TG] ₅	Phillips et al. (2010)
	11	145 bp	234 bp	183 bp	[TAGA] ₁₁ [TG] ₅	Lareu et al. (1998)
21	12 (a)	149 bp	238 bp	187 bp	[TAGA] ₁₂ [TG] ₅	Lareu et al. (1998)
5	12 (b)	149 bp	238 bp	187 bp	[TAGA] ₁₁ TAGG[TG] ₅	Lareu et al. (1998)
ę	13 (a)	153 bp	242 bp	191 bp	[TAGA] ₁₂ TAGG[TG] ₅	Lareu et al. (1998)
	13 (b)	153 bp	242 bp	191 bp	[TAGA] ₁₃ [TG] ₅	Phillips et al. (2010)
	13.3	156 bp	245 bp	194 bp	[TAGA]1TGA[TAGA]11TAGG[TG]5	Phillips et al. (2010)
8	(14 (a)	157 bp	246 bp	195 bp	[TAGA] ₁₃ TAGG[TG] ₅	Lareu et al. (1998)
andras	14 (b)	157 bp	246 bp	195 bp	[TAGA] ₁₄ [TG] ₅	Phillips et al. (2010)
	14.3	160 bp	249 bp	198 bp	[TAGA] ₄ TGA[TAGA] ₉ TAGG[TG] ₅	Phillips et al. (2010)
	15	161 bp	250 bp	199 bp	[TAGA] ₁₄ TAGG[TG] ₅	Lareu et al. (1998)
ē	15.3	164 bp	253 bp	202 bp	[TAGA] ₄ TGA[TAGA] ₁₀ TAGG[TG] ₅	Lareu et al. (1998)
5	16	165 bp	254 bp	203 bp	[TAGA] ₁₅ TAGG[TG] ₅	Lareu et al. (1998)
2	16.3	168 bp	257 bp	206 bp	[TAGA] ₄ TGA[TAGA] ₁₁ TAGG[TG] ₅	Lareu et al. (1998)
5	17	169 bp	258 bp	207 bp	[TAGA] ₁₆ TAGG[TG] ₅	Lareu et al. (1998)
ς.	17.1	170 bp	259 bp	208 bp	Not published	Schröer et al. (2000)
Daviasin i sini ci	17.3	172 bp	261 bp	210 bp	[TAGA] ₄ TGA[TAGA] ₁₂ TAGG[TG] ₅	Lareu et al. (1998)
2	18	173 bp	262 bp	211 bp	[TAGA] ₁₇ TAGG[TG] ₅	Phillips et al. (2010)
2	18.3	176 bp	265 bp	214 bp	[TAGA] ₄ TGA[TAGA] ₁₃ TAGG[TG] ₅	Lareu et al. (1998)
	19	177 bp	266 bp	215 bp	Not published	Asamura et al. (2008)
	19.3	180 bp	269 bp	218 bp	[TAGA] ₄ TGA[TAGA] ₁₄ TAGG[TG] ₅	Lareu et al. (1998)
	20.3	184 bp	273 bp	222 bo	Not published	Gamero et al. (2000)

	NIST U.S. Population Allele Frequencies											
	D1S1656 (15 different alleles)											
	Allele	African American (N = 341)	Caucasian (N = 361)	Hispanic (N = 236)	N = 938							
	10 11	0.01433 0.04871	0.00277 0.07756	0.00630 0.02731	(only unrelated samples used;							
s	12 13 14	0.06304 0.10029	0.11773 0.06648	0.08824	fathers removed from this sample set) < 5/2N							
alleles		0.25788 0.00716 0.15616	0.07895 0.00277 0.14820	0.11765 0.00420 0.13866								
different	15.3 16	0.03009	0.05817	0.05042 0.17437								
15 dif		0.10029 0.02865	0.06094	0.05462 0.04202								
	17.3 18	0.05014 0.00287	0.13296 0.00554	0.14496 0.00630								
	18.3 19.3	0.02436 0.00573	0.05125 0.01385	0.02521 0.00420								

D1S1656 Characteristics

- 15 alleles observed
- · 92 genotypes observed
- >89% heterozygotes (heterozygosity = 0.8934)
- 0.0220 Probability of Identity (P)


$$P_I = \sum (genotype \ frequencies)^2$$

These values have been calculated for all 24 STR loci across the U.S. population samples examined

Loc	i sorted on Pr	bability of Iden Genotypes	tity (P _i) valu Het.	^{es} P _i value	24 STR Loci
STR Locus		Observed	(obs)	N = 938	in STR kits rank
SE33	53	292	0.9360	0.0069	ordered by their variability
Penta E*	20	114	0.8799	0.0177	ordered by their variability
D2S1338	13	68	0.8785	0.0219	Better for mixtures
D1S1656	15	92	0.8934	0.0220	
D18S51	21	91	0.8689	0.0256	 (more alleles seen)
D12S391	23	110	0.8795	0.0257	
FGA	26	93	0.8742	0.0299	
D6S1043*	25	91	0.8627	0.0343	J
Penta D*	16	71	0.8754	0.0356	
D21S11	25	81	0.8358	0.0410	
D19S433	16	76	0.8124	0.0561	There are several loci
D8S1179	11	45	0.7878	0.0582	more polymorphic
vWA	11	38	0.8060	0.0622	than the current
D7S820	11	32	0.8070	0.0734	CODIS 13 STRs
TH01	8	24	0.7580	0.0784	00013 13 3113
D16S539	9	28	0.7825	0.0784	
D13S317	8	29	0.7655	0.0812	
D10S1248	12	39	0.7825	0.0837]
D2S441	14	41	0.7772	0.0855	
D3S1358	11	30	0.7569	0.0873	Better for kinship
D22S1045	11	42	0.7697	0.0933	
CSF1PO	9	30	0.7537	0.1071	(low mutation rate)
D5S818	9	34	0.7164	0.1192	
TPOX	9	28	0.6983	0.1283 _	J

/hat	Mbu		doi:10.1016/j.fsigen.2012.01
Vhat Form a Working Group (WG) to discuss initial selection	Why Establishes target goals	CODIS Core Loci Working Group with FBI Chair and 5 members; Web meetings	When May 2010 - present
Announce proposed additional CODIS core loci	Sets desired target goals and informs manufacturers	WG Chair; Publish proposed listing of CODIS core loci	April 2011 online (published Jan 2012)
Ongoing Progress Reports	Provides updates for DNA community	WG Chair; Present updates on status of CODIS Core Loci project at meetings	2010-2012
Implementation Considerations & Strategy	Identify issues for implementation and timeline	WG	June 2011 - present
Manufacturers develop prototype kits	Creates tools to meet target goals	Manufacturers; Provide status reports to WG for timeline	2011-2012
Test and validate prototype kits	Examines if target goals can be met	QAS compliant validation plan	Beginning in 2012
Review and evaluate data from validation	Evaluates if desired performance is obtained	NIST, SWGDAM and FBI; Provide feedback, if any, to Manufacturers	In conjunction with and a conclusion of validation
Selection of new CODIS core loci	Allows protocols to be established	FBI; seek input from DNA community and stakeholders; Notify Congress	After evaluation of validati data and kit production far
Implementation of new CODIS core loci at the National DNA Index System	Enables target goals to be met	All NDIS-participating labs	~ 24 months after selection new CODIS core loci

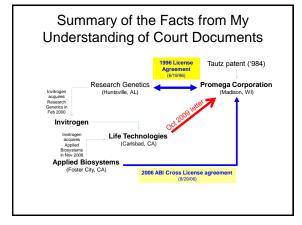
http://www.fbi.gov/about-us/lab/codis/planned-process-and-timeline-for-implementationof-additional-codis-core-loci

Which autosomal STR kit do you use? (select only one)

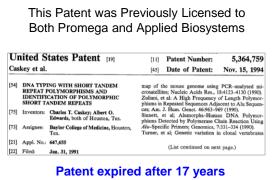
- 1. Identifiler
- 2. MiniFiler
- 3. Profiler/Cofiler
- 4. Identifiler & MiniFiler
- 5. All of the above
- 6. Promega kits

Recent Court Decision Impacting Sale of STR Typing Kits

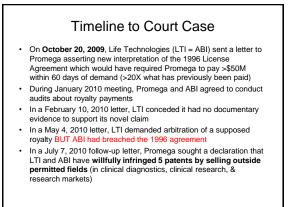
Disclaimer: The information contained herein is only as accurate as my understanding of the information available to me at the time this presentation was given. Things are still evolving with this case...



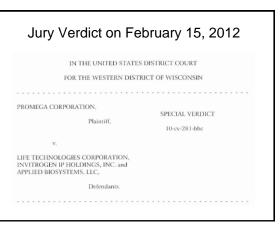
Notice on ABI STR Kits


IMPORTANT NOTICE

The UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF WISCONSIN ruled that certain products (listed below) sold by Life Technologies Corporation ("Life") can only be used by customers for forensic and paternity uses ("Licensed Use"). Specifically, the Court held that the license Life holds from Promega Corporation ("Promega") does not include the following applications: (1) chimerism (which involves determining the relative amount present of two different types of DNA); (2) classifying molar specimens (which involves determining whether a mole is present and what type it is); (3) cell line authentication (which involves a determination of whether two cell lines are unique); (4) determination of fetal sex;(5) cancer analysis; (6) genetic research; (7) non-casework-related forensic applications such as general research in forensics or teaching and training of persons not employed in a forensic laboratory; (8) maternal cell contamination; and (9) sample tracking. Accordingly, this notice replaces any other label license or use statement for the listed products only as those labels or statements relate to the use of such products under the Promega license. Any other restrictions, such as regulatory restrictions, related to the use of these products are not affected by this notice. If a customer has any question regarding whether their intended use is within or outside the Licensed Use, please contact LicenseQuery@lifetech.com .


The following products are subject to this notice: 4322288 AmpF{STR® Identifiler® PCR Amplification Kit The following products are subject to this notice: 4322288 AmpF¢STR® Identifiler® Drect PCR Amplification Kit 4406830 AmpF¢STR® Identifiler® Direct PCR Amplification Kit (1000 tests) 4467831 AmpF¢STR® Identifiler® Direct PCR Amplification Kit 437382 AmpF¢STR® Identifiler™ PCR Amplification Kit 4373872 AmpF¢STR® Identifiler™ PCR Amplification Kit 4373872 AmpF¢STR® NGM™ PCR Amplification Kit 445020 AmpF¢STR® NGM™ PCR Amplification Kit 415020 AmpF¢STR® NGM SElect™ PCR Amplification Kit 415020 AmpF¢STR® NGM SElect™ PCR Amplification Kit 4150333 AmpF¢STR® NGM SElect™ PCR Amplification Kit 4303324 AmpF¢STR® Profiler PLus® PCR Amplification Kit 430326 AmpF¢STR® Profiler PLus® ID PCR Amplification Kit 4305246 AmpF¢STR® Coffiler® PCR Amplification Kit 4305246 AmpF¢STR® Sefiler PLus® ID PCR Amplification Kit 4305246 AmpF¢STR® Sefiler PLus® ID PCR Amplification Kit 4305246 AmpF¢STR® Sefiler PLus® ID PCR Amplification Kit 4305246 AmpF¢STR® Profiler PLus® ID PCR Amplification Kit 4305245 AmpF¢STR® Sefiler PLus® ID PCR Amplification Kit 430524 AmpF¢STR® Sefiler PLus® ID Rit and AmpFLSTR® Cofiler® Kits 4330621 AmpF¢STR® Sefiler PLus® ID Kit and AmpFLSTR® Cofiler® Kits 4330521 AmpF¢STR® Sinofiler™ PCR Amplification Kit 432624 AmpF¢STR® Sinofiler™ PCR Amplification Kit 432624 AmpF¢STR® Sinofiler™ PCR Amplification Kit 4326306 AmpF¢STR® Sinofiler™ PCR Amplification Kit 438224 AmpF¢STR® Sinofiler™ PCR Amplification Kit 438234 AmpF¢STR® Sinofiler™ PCR Amplification Kit 438234 AmpF¢STR® Sinofiler™ PCR Amplification Kit 438234 AmpF¢STR®

Jnited States Patent [19] chumm et al.	III Patent Number: 5,843,660 '660 [45] Date of Patent: Dec. 1, 1998
MULTIPLEX AMPLIFICATION OF SHORT TANDEM REPEAT LOCI United States Patent	(10) Patent No.: US 6,221,598 B1 '598
Schumm et al.	(45) Date of Patent: *Apr. 24, 2001
(12) United States Patent Schumm et al.	(10) Patent No.: US 6,479,235 B1 (45) Date of Patent: Nov. 12, 2002 '235
(12) United States Patent Schumm et al.	(10) Patent No.: US 7,008,771 B1 (45) Date of Patent: Mar. 7, 2006
	(10) Patent Number: US RE37,984 E (45) Date of Reissued Patent: Feb. 11, 2003
(54) PROCESS FOR ANALYZING LENGTH POLYMORPHISMS IN DNA REGIONS	H. Chen et al., Human Muation, 4:208-211 (1994). X. Y. Hauge et al., Human Molecular Genetics, 2(4):411-415 (1993).
(75) Inventors: Herbert Jäckle, Göttingen (DE); Diethard Tautz, Köln (DE)	J. M. Hite et al., Nucleic Acids Research, 1996, vol. 24, No. 12, pp. 2429–2434.
(73) Assignce: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V.	 D. Tautz, Nucleic Acids Research, 1989, vol. 17, No. 16, pp. 6463–6471. A. Edwards et al., Trans. Assoc. Am. Phys., 102nd Session, vol. 102:185–194 (1989).
Gottingen (DE)	
	M. Litt et al., Am. J. Hum. Genetics, 1989, vol. 44, pp. 397–401.
Gottingen (DE)	

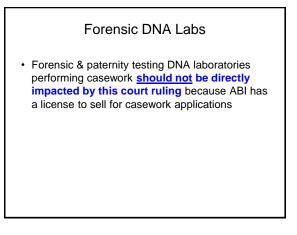


on November 15, 2011

Trial Dates and Results

- February 6, 7, 8, 9, 10, 13, 14, 15 (2012)
- Jury verdict on February 15, 2012
- Judgment on February 23, 2012
- Promega received \$52,009,941 from Life Technologies (Applied Biosystems)

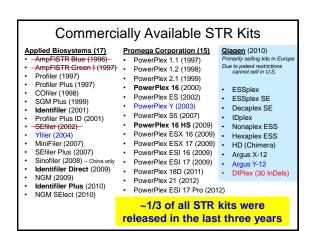
 Ouestion No.1: What is the total dollar amount of worldwide STR kit sales made between August 29, 2006 through the end of January 2012 by defendants Life Technologies Corporation, Invitrogen IP Holdings. Inc. and Applied Biosystems, LLC?

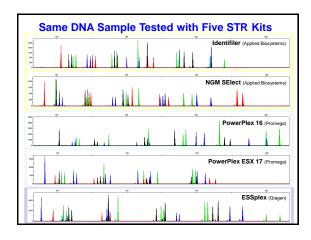

• Answer: \$ 707,618,247

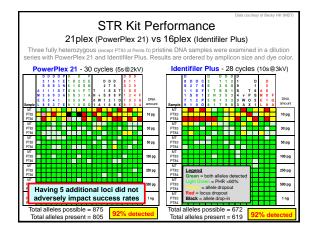
Answer Question No. 5.

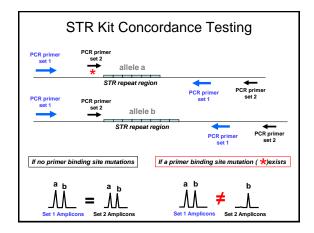
<u>Question No. 5</u>: What profits, if any, did plaintiff lose as a result of defendants' sales that you found in Question No.4?

Answer: \$ 52,009,941

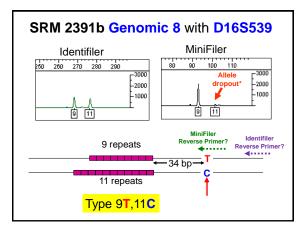

Answer Question No. 7.
Question No. 7: Was defendants' infringement willful?
Answer: YES (Yes or No)
Daniel Lynch
Madison, Wisconsin Dated this <u>1.5</u> day of February, 2012

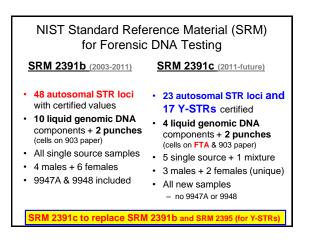



New STR Kits

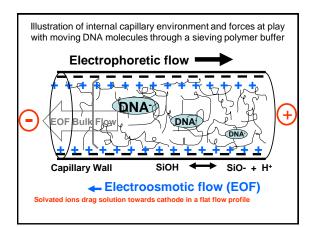

Potential Impact on NIST

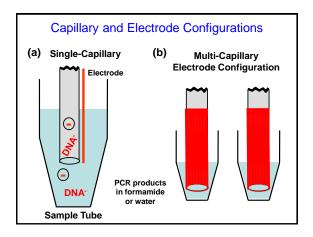
- Judge has narrowly defined that only forensic labs and paternity labs may be sold ABI kits – NOT universities or other research labs
- I have spoken with lawyers from both Promega and Life Technologies (Applied Biosystems)
- The initial plan was for Promega to work with LTI/ABI to develop a permitted purchase list institution by institution
 - Promega wants to take over cell line authentication market and other clinical DNA applications
- Purchase of ABI STR kits for forensic research and training may not be permitted in the future
- Both companies would like to keep their customers happy...

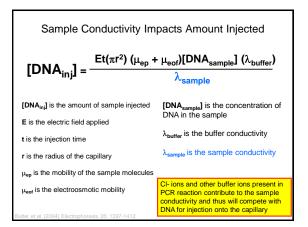


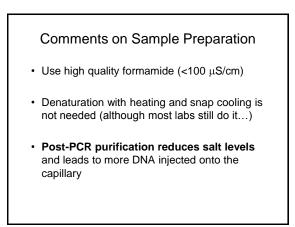


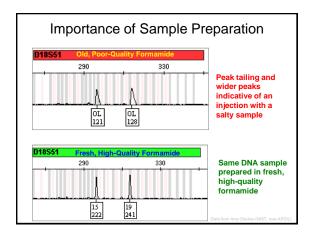
STR Kit Comparisons Searching for Primer Binding Site Mutations					
Kits compared	Samples	Loci compare	d Comparisons #	Differences	Concordance (%)
SGM-ID	1436	11	15,796	1	99.994
ID-ProPlus	1427	10	14,270	1	99.993
ID-IDplex	669	16	10,704	19	99.822
ID-PP16	662	14	9,268	4	99.957
ID-MiniFiler	1308	9	11,772	27	99.771
SGM-NGM	1436	11	15,796	4	99.975
ID-NGM	1449	400			1. A
ProPlus-NGM	1427	128	kit-to-kit	compa	arisons
SGM-ESI	1436	4 404			norio ono
ProPlus-ESX	1427	1,104,	UST allel	e com	parisons
ESI-ESX	1455	1224	differen	cos ob	sorvod
ESI-ESSplex	1445	1224	uneren	CE3 01	JSEIVEU
ESX-ESSplex	1445	~(99.9% co	ncord	ance
ESI-NGMSElect	715				
		(1	many corr	rected i	now)
	Kits (except Identifiler) were kindly provided by Applied Biosystems, Promega, and Qiagen for concordance testing performed at NIST				

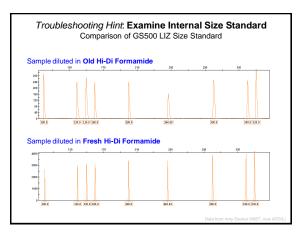


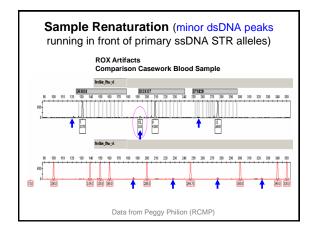


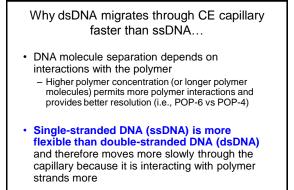


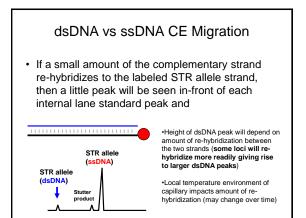

CE Fundamentals & Troubleshooting

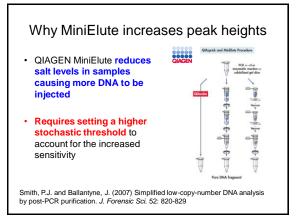


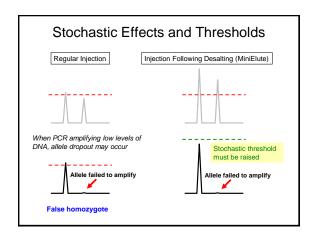


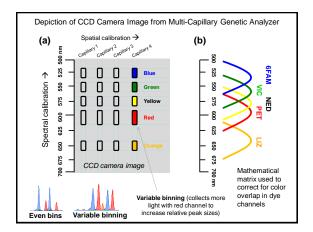


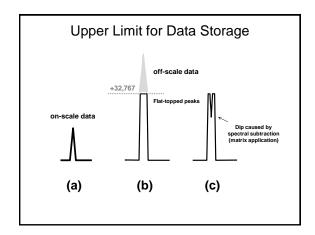


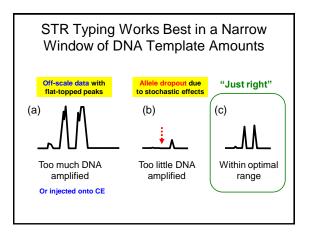


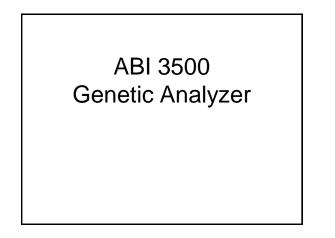


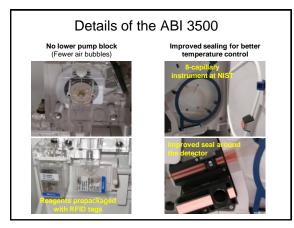


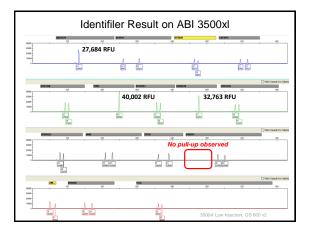


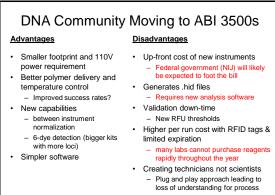


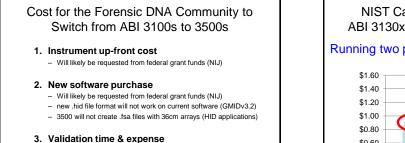






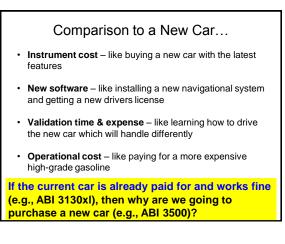


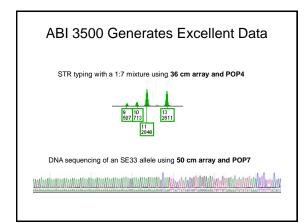

ABI Genetic Analyzer	Years Released for Human ID	Number of Capillaries	Laser	Polymer delivery	Other features
373 (gel system)	1992-2003	-	40 mW Ar+ (488/514 nm)	-	PMTs and color filter wheel for detection
377 (gel system)	1995-2006		40 mW Ar+ (488/514 nm)	-	CCD camera
310	1995-	1	10 mW Ar+ (488/514 nm)	syringe	Mac operating system & Windows NT (later)
3100	2000-2005	16	25 mW Ar+ (488/514 nm)	syringe	
3100-Avant	2002-2007	4	25 mW Ar+ (488/514 nm)	syringe	
3130	2003-2011	4	25 mW Ar+ (488/514 nm)	pump	
3130xl	2003-2011	16	25 mW Ar+ (488/514 nm)	pump	
3500	2010-	8	10-25 mW diode		110V power; RFID-tagged reagents; .hid files;
3500xl	2010-	24	(505 nm)	new pump	normalization & 6-dye detection possible
3700	2002-2003	96	25 mW Ar+ (488/514 nm)	cuvette- based	Split beam technology
3730	2005-	48	25 mW Ar+ (488/514 nm)	pump	
3730xl	2005-	96	25 mW Ar+ (488/514 nm)	pump	



Primary Differences						
	3500 Platforms					
Laser	Argon ion (AR+) with 488/514 nm wavelength	Single-line 505 nm, solid-state, long-life laser				
Power Requirement	220V	110V				
File Generated	.fsa files	.hid files				
Normalization	None	Instrument-to- instrument; only with AB kits				
Optimal Signal Intensity	1500-3000 RFU	4x greater than 31xx platforms				

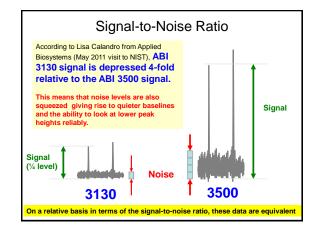
- Less flexible (impacts research with it)

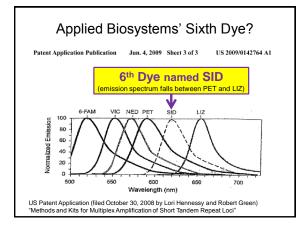

- Relative fluorescent scales are completely different...


4. Operational cost


- ABI claims that the running costs are equivalent to 3130s...

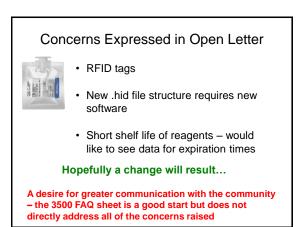
NIST Calculated Cost per Sample for ABI 3130xl vs. 3500 and 3500xl Reagents Running two plates per day (10 plates per week) \$1.50 cap \$1.11 3130 \$0.96 3130 (AB) \$0.79 Assumptions) 3500 \$0.60 16 02 \$0.40 3500xl \$0.20 \$0.00 Cost Per Sample





Questions about the ABI 3500

- Is the 3500 more sensitive because it shows peaks with higher RFU levels than 3130?
 - Not necessarily \rightarrow what matters is the signal-to-noise
- Can we normalize signal across instruments to generate "equivalent" data between our instruments?
 - I am not aware of anyone using normalization successfully (including Applied Biosystems)
- Will 6-dye detection be necessary with the CODIS core loci expansion?



Potential Issues with 6-dye STR kits

- ABI announced in their Spring 2012 issue of Forensic News that a 6-dye STR kit was in development
 Which would enable another 4-6 loci to be added to a multiplex
- Most labs now have 3130 or 3130xl instruments
 - Will all labs have to purchase 3500 instruments?
 Or will the 3130 or 3730 series instruments be made compatible for 6-dyes?
- Spectral calibration issues and potential bleed through across color channels are untested
- FYI: it appears that information from up to 99 different dyes can be stored in .fsa or .hid files (based on current data file structure schema)

Open Letter to Applied Biosystems on Concerns with ABI 3500

- 3/14/11 emailed ~900 forensic DNA scientists (SWGDAM, forens-dna, ENFSI, EDNAP) inviting them to sign onto a letter that will be sent to Applied Biosystems expressing concern with ABI 3500
- Very positive response with 101 who agreed to sign the letter
- Letter was sent March 31 to the president of ABI and scientists involved with the ABI 3500
- Community will be notified of ABI's response

Brief Timeline of Events

- NIJ requested NIST to explore capabilities, limitations, and cost of ABI 3500 instrument and reagents (May 2010)
- NIST presentations to NIJ (Dec 2010) and SWGDAM (Jan 2011)
- Open letter support solicited and sent to ABI (Mar 2011)
- Further discussions between NIST and ABI (Apr-Sept 2011)
- At the Promega ISHI meeting (Oct 2011), ABI announced through a poster at their booth that polymer and buffer expiration dates will no longer be a hard stop but only a warning with the future Windows 7 software upgrade

Since May 2011, Erica Butts has presented several validation presentations on our ABI 3500 work – these are available on STRBase

What was learned from the May 11 visit of ABI scientists to NIST...

- RFID over-ride is possible (their R&D lab has instrument that can use "expired" reagents) – they are "considering" making this option available
- New software is required for 3500 .hid or .fsa files due to new file structure
- They do not have ANY data to support short shelf life of 3500 reagents

 A business decision to set hard stops to keep labs from having failures that lead to ABI having to replace arrays
- ABI 31xx instruments have DEPRESSED signal (i.e., should have a lower analytical threshold)
- Normalization is not well worked out by ABI or really understood (although this has been a major selling point for the 3500)
- · ABI was shocked that there were concerns with some of the feedback

A Sampling of Feedback I Received...

- People did not just sign the letter but many have an opinion about the issues or concern about ABI customer support (I have received >100 emails – often with some very strong thoughts)
- "I think that the AB3500 related issues most likely represent the beginning of a sea of problems, against which every independent lab must take arms. It is not up to the manufacturer of a machine to decide the basic procedures of a lab - it is up to the lab" (4/29/11)
- "I greatly appreciate your advocacy on behalf of our community. Hopefully we will be heard." (4/1/11)

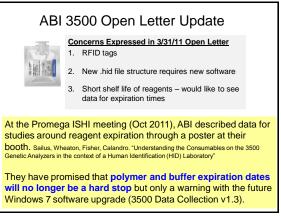
Response from Dr. Robin Cotton (shared with her permission)

Sent: Saturday, April 30, 2011 10:39 AM

Dear John,

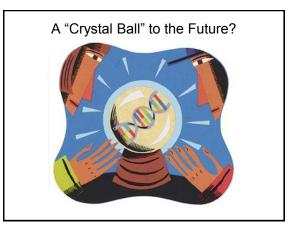
Thank you for the information and the inclusion of the letter from Dr. Klevan. It is clear that Dr. Klevan does not consider the substantial time and expense which will be required for each forensic laboratory for instrument and software validation.

The other point which I feel is significant is the need for the additional software purchase. Since he states that the new software is compatible with .fsa files, I think the company should make a software exchange available at low cost for any lab purchasing the 3500 instrument. Many commercially available software companies make new versions available at reduced costs to individuals or groups already running an earlier versions. Because of the increased number of technical changes the 3500 presents, the validation data may be more extensive than was required for previous instrument change-over and thus the validation time and cost to each laboratory will also be increased.

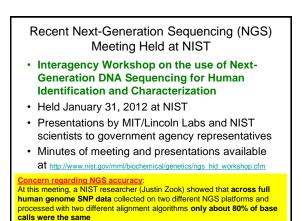

(page 1 of 2)

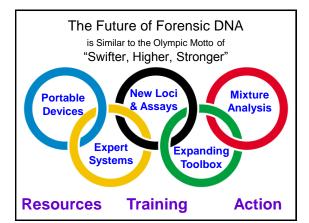
Response from Dr. Robin Cotton (shared with her permission)

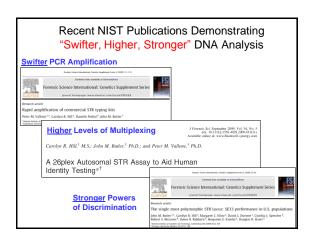
It would also be relevant to ask Dr. Klevan to provide figures for the number of current 3500 users without the inclusion of paternity testing laboratories which are all commercial operations. While I am a dvocate for private laboratories (both forensic and paternity), these facilities have the option to raise prices and accommodate the need for increased validation time and expense in other ways that do not require federal or other government support.


Additionally, in the Biomedical Forensic Science Masters program here at BU, we feel it is important to teach our students using current instrumentation and techniques. Introduction of this new instrument will affect many forensic science teaching institutions, both undergraduate and graduate, as well as all current forensic DNA testing laboratories. These institutions have significantly less access to NIJ funding for large equipment and software than the operating forensic DNA laboratories. Thus the effect of changes reach into the educational institutions as well.

Regards, Robin W. Cotton, Ph.D. Boston University


Should the community try to pursue further action on the ABI 3500 open letter concerns?


- 1. Yes
- 2. No



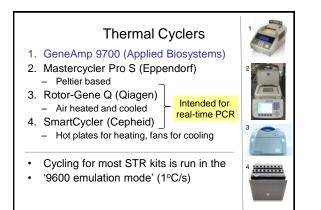
Some Thoughts on the Future... Problems with pushing the envelope (without proper validation) - Faster enzymes to enable rapid PCR More robust enzymes and master mixes to overcome inhibition Instrumentation More dye colors to aid higher levels of multiplexing - Rapid, integrated devices Alternatives to capillary electrophoresis: PLEX-ID and NGS Quantitative information - qPCR and digital PCR Marker systems Expanding sets of STR loci for growing DNA databases Other marker systems: SNPs, InDels, X-STRs, RM Y-STRs

- Body fluid identification with mRNA, miRNA, and DNA methylation
- Phenotyping for external visible characteristics
- Challenges with potential whole genome information
- Data interpretation
- Probabilistic genotyping for low-level DNA and mixture interpretation
- Probability of dropout

Rapid PCR and Rapid DNA Testing

Main Points:

- Performing research on reducing the total time required for STR typing
 - Focusing on the multiplex amplification of commercial STR kits with faster polymerases and thermal cyclers
- Single-source reference samples (sensitivity > 200 pg)
 Designing testing plans for rapid DNA typing devices
- NIST will be examining rapid DNA instruments with FBI collaboration
- Exploring direct PCR protocols with FTA and 903 papers

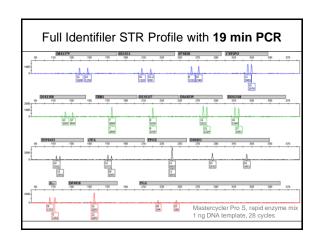

Presentations/Publications:

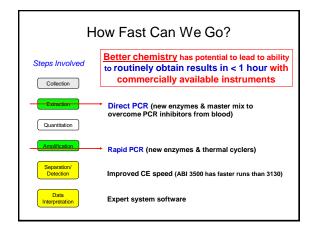
- Vallone et al. (2008) FSI Genetics on rapid PCR
- ISFG 2011 and ISHI 2011 presentations by Tom Callaghan (FBI)
- ISFG 2011 presentation and poster on direct PCR

Common Thermal Cycling Times

Can we reduce PCR cycling times? What are the effects or limitations?

Year	Run on a 9700 thermal cycler	Hot start	Time per cycle	Cycles	Post soak	Total time
1997/98	Profiler Plus/Cofiler	11 min	3 min	28	60 min	2:52
1999	SGM Plus	11 min	3 min	28	45 min	2:53
2000	PowerPlex 16	12 min	1 min 45 s	32	30 min	3:00
2001	Identifiler	11 min	3 min	28	60 min	2:58
2003	PowerPlex Y	12 min	1 min 45 s	32	30 min	3:18
2004	Yfiler	11 min	3 min	30	80 min	2:45
2007	PowerPlex S5	2 min	4 min	30	45 min	3:21
2007	minifiler	11 min	3 min 20 s	30	45 min	3:16
2009	ESI 16, 17 ESX 16,17	2 min	4 min	30	45 min	3:22
2009	PowerPlex 16 HS	2 min	1 min 45 s	32	30 min	2:42
2009	NGM	11 min	3 min 20 s	29	10 min	2:33
2009	Identifler Direct	11 min	3 min	26	25 min	2:34
2010	Idenfiler Plus	11 min	3 min 20 s	28	10 min	2:18
2011	PowerPlex 18D	2 min	1 min 10s	27	20 min	1:25


PCR Thermal Cycling Profile Identifiler STR kit 28 cycles of PCR 95°C 95°C 72°C 60°C 10 min 59°C 1 min 1 min 60 min 1 min 95°C 95°C 72°C 72°C 1 min 58°C 5 s 10 s 1 min 10 s Sub 36 min run time Maximum heating/cooling rate of ~2 to 6°C/s (cycler dependent)


Rapid PCR Conditions

- 1 X Takara PCR mastermix, 1 U SpeedStar polymerase
 Premix Ex Taq™ (Perfect Real Time)
- 10 µL total reaction in a thin walled tube (8-strip)
- 2 μL of Identifiler PCR primer mix
- ~1 ng of template DNA

Utilize maximum ramp rate on thermal cyclers

- GeneAmp 9700 = 1.6°C/s (36 min)
- Rotor-Gene Q = 1.6°C/s (36 min) Effective heating/cooling rates
- SmartCycler = 5.8°C/s (20 min)
 Mastercycler Pro S = 6.8°C/s (19 min)

Take Home Messages

- STR measurements involve assessment of PCR product mobility (not DNA size)
- ABI 3500 works well but will require careful validation for threshold determination because signal and noise levels are different
- Rapid PCR & integrated DNA devices may become a game-changer in the future

