Likelihood Ratios for Single Contributor Profiles

Simone Gittelson, Ph.D., simone.gittelson@nist.gov
Michael Coble, Ph.D., michael.coble@nist.gov

Acknowledgement

I thank Michael Coble, Bruce Weir and John Buckleton for their helpful discussions.

Disclaimer

Points of view in this presentation are mine and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Single Contributor Stain

crime scene

person of interest

Single Contributor Stain

Presenting analytical results alone is not enough to provide useful information for the legal system.

LR for Source Level Propositions

Source level propositions:
H_{p} : The crime stain came from the person of interest.
H_{d} : The crime stain came from some other person.

LR for Source Level Propositions

Source level propositions:

LR for Source Level Propositions

$$
\begin{aligned}
& L R=\frac{\operatorname{Pr}\left(E \mid H_{p}, I\right)}{\operatorname{Pr}\left(E \mid H_{d}, I\right)} \\
& =\frac{\operatorname{Pr}\left(G_{C S}, G_{P O I} \mid H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S}, G_{P O I} \mid H_{d}, I\right)} \\
& =\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)} \times \frac{\operatorname{Pr}\left(G_{P O I} \mid H_{p}, I\right)}{\operatorname{Pr}\left(G_{P O I} \mid H_{d}, I\right)} \\
& =\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)} \times \frac{\operatorname{Pr}\left(G_{P O I} \mid I\right)}{\operatorname{Pr}\left(G_{P O I} \mid I\right)} \\
& 1
\end{aligned}
$$

LR for Source Level Propositions

$$
L R=\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)}
$$

Numerator
the probability of observing the analytical results of the crime stain if the crime stain comes from the person of interest and given the analytical results of the person of interest's sample and other available information

LR for Source Level Propositions

$$
L R=\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)}
$$

Numerator

the probability of observing the analytical results of the crime stain if the crime stain comes from the person of interest and given the analytical results of the person of interest's sample and other available information

A) 1

LR for Source Level Propositions

$$
L R=\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)}
$$

Numerator
the probability of observing the analytical results of the crime stain if the crime stain comes from the person of interest and given the analytical results of the person of interest's sample and other available information

LR for Source Level Propositions
 $$
L R=\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)}
$$

Denominator

the probability of observing the analytical results of the crime stain if the crime stain comes from some other person and given the analytical results of the person of interest's sample and the available information

What is the probability of observing a second person with this genotype given that we have already observed one person with this genotype?

LR for Source Level Propositions

Denominator

ASSUMPTION:
The probability of observing $G_{C S}$ is independent of the genotype obseved for $G_{P O I}$.

$$
\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)=\operatorname{Pr}\left(G_{C S} \mid H_{d}, I\right) \mid
$$

NRC II

Formula 4.1a
Homozygote genotypes:

$$
p_{A}^{2}
$$

Formula 4.1b
Heterozygote genotypes:

LR for Source Level Propositions

Denominator

ASSUMPTION:
The probability of observing $G_{C S}$ is not independent of the genotype observed for $G_{P O I}$. There is a probability that the crime stain's donor and the person of interesst share an allele passed down from a common ancestor.

Balding \& Nichols Equations

Balding D.J., Nichols R.A. DNA profile match probability calculation: how to allow for population stratification, relatedness, database selection and single bands. Forensic Science International 1994; 64: 125-40.

Subpopulations

The coancestry coefficient $F_{S T}$, also called θ, is the probability that two individuals have an allele identical by descent (IBD).

What is the probability of seeing allele 28 in this population given that we have already observed one copy of allele 28?

Subpopulations

The coancestry coefficient $F_{S T}$, also called θ, is the probability that two individuals have an allele identical by descent (IBD).

The probability of observing an allele $\mathbf{2 8}$ is:

allele 28 is IBD with 28
$(1-\theta) p_{28}$

-llele 28 is not IBD with any of the alleles already seen, it is observed by chance

Subpopulations

Rule of Thumb

If the allele in question has not been seen previously, then it is seen by chance.

If the allele in question has already been seen, then it could be observed again by chance or because it is IBD with an allele that has already been seen.

Subpopulations

What is the probability of seeing ollele $\mathbf{2 8}$ in this population given that we have already observed allele 28 and allele 28?

Subpopulations

We have seen: allele 28 and allele 28

The probability of observing an allele $\mathbf{2 8}$ is:

allele 28 is
IBD with 28

allele 28 is
IBD with 28
$(1-\theta) p_{28}$

allele $\mathbf{2 8}$ is not IBD with any of the alleles already seen, it is observed by chance

Subpopulations

We have seen: allele 28 and allele 28

The probability of observing an allele $\mathbf{2 8}$ is:

$$
2 \theta+(1-\theta) p_{28}
$$

$$
1+\theta
$$

Subpopulations

We have seen: allele 28 and allele 28

The probability of observing an allele $\mathbf{2 8}$ is:

$$
\frac{2 \theta+(1-\theta) p_{28}}{1+\theta}
$$

Subpopulations

What is the probability of seeing allele 28 in this population given that we have already observed allele 28, allele 28 and allele 28?

Subpopulations

We have seen: allele 28, allele 28 and allele 28

The probability of observing an allele 28 is:

Subpopulations

We have seen: allele 28, allele 28 and allele 28

The probability of observing an allele 28 is:

$$
3 \theta+(1-\theta))_{28}
$$

$$
1+2 \theta
$$

Subpopulations

We have seen: allele 28, allele 28 and allele 28

The probability of observing an allele 28 is:

$$
\frac{3 \theta+(1-\theta) p_{28}}{1+2 \theta}
$$

Subpopulations

What is the probability of seeing genotype $\{\mathbf{2 8}, \mathbf{2 8}\}$ in this population given that we have already observed a genotype $\{28,28\}$?

$$
\frac{2 \theta+(1-\theta) p_{28}}{1+\theta} \times \frac{3 \theta+(1-\theta) p_{28}}{1+2 \theta}
$$

Subpopulations

What is the probability of seeing genotype $\{\mathbf{2 8}, 28\}$ in this population given that we have already observed a genotype $\{28,28\}$?

$$
\begin{array}{r}
\frac{2(0.03)+(1-0.03)(0.159)}{1+0.03} \times \frac{3(0.03)+(1-0.03)(0.159)}{1+2(0.03)} \\
=0.048
\end{array}
$$

$$
\begin{aligned}
& \text { What is the genotype probability } \\
& \frac{2 \theta+(1-\theta) p_{28}}{1+\theta} \times \frac{3 \theta+(1-\theta) p_{28}}{1+2 \theta} \\
& \text { equal to if } \boldsymbol{\theta}=\mathbf{0} \text { ? } \\
& \text { A. } 0 \\
& \text { B. } \theta \\
& \text { C. } p_{28}^{2} \\
& \text { D. } 2 p_{28} \\
& \text { E. ??? }
\end{aligned}
$$

Subpopulations

What is the probability of seeing allele $\mathbf{I} \mathbf{3}$ in this population given that we have already observed allele 13 and allele 16?

Subpopulations

We have seen	Divide by
1 allele	1
2 alleles	$1+\theta$
3 alleles	$1+2 \theta$

We have seen: allele 13 and allele 16

The probability of observing an allele I3 is:

allele 13 is allele 15 is IBD with 13
allele 13 is not IBD with any of the alleles already seen, it is seen by chance

$$
1+\theta
$$

Subpopulations

We have seen: allele 13 and allele 16

The probability of observing an allele IS is:

$$
\frac{\theta+(1-\theta) p_{13}}{1+\theta}
$$

Subpopulations

What is the probability of seeing allele 16 in this population given that we have already observed allele 13, allele 16 and allele I3?

Subpopulations

We have seen	Divide by
1 allele	1
2 alleles	$1+\theta$
3 alleles	$1+2 \theta$

We have seen: allele 13, allele 16 and allele 13

The probability of observing an allele 16 is:
$0 \times \theta$
allele
16 is IBD
with 13

allele 16 is not IBD with any of the alleles already seen

$$
1+2 \theta
$$

Subpopulations

We have seen: allele 13, allele 16 and allele I 3

The probability of observing an allele 16 is:

$$
\frac{\theta+(1-\theta) p_{16}}{1+2 \theta}
$$

Subpopulations

What is the probability of seeing genotype $\{\mathbf{I} \mathbf{3}, \mathbf{1 6}\}$ in this population given that we have already observed a genotype $\{13,16\}$?

$$
2 \times \frac{\theta+(1-\theta) p_{13}}{1+\theta} \times \frac{\theta+(1-\theta) p_{16}}{1+2 \theta}
$$

Subpopulations

What is the probability of seeing genotype $\{\mathbf{1 3}, \mathbf{1 6 \}}$ in this population given that we have already observed a genotype $\{13,16\}$?

$$
2 \times \frac{\theta+(1-\theta) p_{13}}{1+\theta} \times \frac{\theta+(1-\theta) p_{16}}{1+2 \theta}
$$

$\xrightarrow{1089179}$
if $\theta=0.03$:

$2 \times \frac{0.03+(1-0.03)(0.33)}{1+0.03} \times \frac{0.03+(1-0.03)(0.033)}{1+2(0.03)}$
$p_{13}=0.330$
$p_{16}=0.033$

$$
=0.040
$$

$$
\begin{aligned}
& \text { What is the genotype probability } \\
& 2 \times \frac{\theta+(1-\theta) p_{13}}{1+\theta} \times \frac{\theta+(1-\theta) p_{16}}{1+2 \theta} \\
& \text { equal to if } \boldsymbol{\theta}=\mathbf{0} \text { ? } \\
& \text { A. } 0 \\
& \text { B. } 2 \theta \\
& \text { C. } p_{13}^{2} \\
& \text { D. } 2 p_{13} p_{16} \\
& \text { E. ??? }
\end{aligned}
$$

NRC II
Formula 4.10a

$$
\operatorname{Pr}(A A \mid A A)=\frac{\left[2 \theta+(1-\theta) p_{A}\right]\left[3 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)}
$$

Formula 4.10b

$$
\operatorname{Pr}(A B \mid A B)=\frac{2\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}
$$

LR for Source Level Propositions
 $$
L R=\frac{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{p}, I\right)}{\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)}
$$

Denominator

the probability of observing the analytical results of the crime stain if the crime stain comes from some other person and given the analytical results of the person of interest's sample and the available information
homozygote: $\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)=\frac{\left[2 \theta+(1-\theta) p_{A}\right]\left[3 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)}$
heterozygote: $\operatorname{Pr}\left(G_{C S} \mid G_{P O I}, H_{d}, I\right)=\frac{2\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}$

Exercise 2: Likelihood Ratios for Single Contributor Profiles

Exercise 2

A burglary was committed where a witness saw a Caucasian person running from the scene. The investigators believe that this was the offender. The crime scene investigators recover a blood stain from a broken window pane from a smashed window through which they presume that the offender entered the building. A forensic laboratory types this blood stain ($G_{C S}$) and a sample taken from Mr. X, a Caucasian person of interest in this case ($G_{P O I}$). For locus D21S11, the laboratory obtains the following typing results:

$$
\begin{aligned}
G_{C S} & =\{27,32\} \\
G_{P O I} & =\{27,32\}
\end{aligned}
$$

Exercise 2

1) What is the likelihood ratio (LR) for these results with regard to the following pair of propositions?
H_{p} : The blood stain recovered on the crime scene came from Mr. X.
H_{d} : The blood stain recovered on the crime scene came from somebody else, unrelated to Mr. X.

Assume US Caucasian allele probabilities of $p_{27}=0.026$ and $p_{32}=0.007$ for locus D21S11, a coancestry coefficient of $\theta=0.01$, and that the numerator of the LR is equal to 1 .

Exercise 2

2) If the factfinder's prior odds for the above propositions are $\frac{\operatorname{Pr}\left(H_{p} \mid I\right)}{\operatorname{Pr}\left(H_{d} \mid I\right)}=\frac{1}{99}$, what should the factfinder's posterior odds be after hearing the DNA evidence?

Exercise 2

3) What should the factfinder's posterior probability $\operatorname{Pr}\left(H_{p} \mid G_{C}, G_{P}, I\right)$ be?

NRC II Report Recommendations

Fixation indices (\boldsymbol{F}-statistics)

F-statistics	alternative notation	Meaning
$F_{I S}$	f	Individual to Subpopulation: the correlation of alleles within an individual within a subpopulation
$F_{I T}$	F	Individual to Total population: the correlation of alleles within an individual ("inbreeding')
$F_{S T}$	θ	Subpopulation to Total population: the correlation of alleles of different individuals in the same subpopulation ("coancestry")

NRC II Report Recommendations

		Assumptions
	Hardy-Weinberg Law:	Assumes Hardy-Weinberg Equilibrium and Linkage Equilibrium in the population
	includes possibility that the individual's two alleles are IBD ("inbreeding"):	Corrects for Hardy-Weinberg Disequilibrium in the population caused by population subdivision. Assumes Linkage Equilibrium in the population.
	includes possibility that an individual's alleles are IBD with each other or with other observed alleles in the population ("coancestry"):	Corrects for Hardy-Weinberg Disequilibrium and Linkage Disequilibrium in the population caused by population subdivision. Assumes Hardy-Weinberg Equilibrium and Linkage Equilibrium in the sub-populations.

NRC II Report Recommendations

		Homozygotes	Heterozygotes
	Hardy-Weinberg Law:	p_{28}^{2}	$2 p_{13} p_{16}$
	includes possibility that the individual's two alleles are IBD ("inbreeding"):	$F p_{28}+(1-F) p_{28}^{2}$	$2 p_{13} p_{16}$
	includes possibility that an individual's alleles are IBD with each other or with other observed alleles in the population ("coancestry"):	$\frac{\left[2 \theta+(1-\theta) p_{28}\right]\left[3 \theta+(1-\theta) p_{28}\right]}{(1+\theta)(1+2 \theta)}$	$\frac{2\left[\theta+(1-\theta) p_{13}\right]\left[\theta+(1-\theta) p_{16}\right]}{(1+\theta)(1+2 \theta)}$

NRC II Report Recommendations			
		Homozygotes	Heterozygotes
	Hardy－Weinberg Law：	0.025	0.022
	includes possibility that the individual＇s two alleles are IBD （＂inbreeding＂）	$\begin{gathered} F=0.01: \\ 0.027 \\ F=0.03: \\ 0.029 \end{gathered}$	0.022
年管	includes possibility that an individual＇s alleles are IBD with other observed alleles in the population （＂coancestry＂）：	$\begin{gathered} \theta=0.01: \\ 0.032 \\ \theta=\begin{array}{c} 0.03: \\ 0.048 \end{array} \end{gathered}$	$\begin{gathered} \theta=0.01: \\ 0.028 \\ \theta=\begin{array}{c} 0.03: \\ 0.040 \end{array} \end{gathered}$

NRC II Report Recommendations

		match probability for 15 loci	
	Hardy－Weinberg Law：		8.9×10^{-23}
震	includes possibility that the individual＇s two alleles are IBD （＂inbreeding＂）	$\begin{aligned} & F=0.01: \\ & F=0.03: \end{aligned}$	$\begin{aligned} & 1.0 \times 10^{-22} \\ & 1.4 \times 10^{-22} \end{aligned}$
年	includes possibility that an individual＇s alleles are IBD with each other or with alleles in the population （＂coancestry＂）：	$\begin{aligned} & \theta=0.01: \\ & \theta=0.03: \end{aligned}$	$\begin{aligned} & 3.6 \times 10^{-21} \\ & 2.4 \times 10^{-19} \end{aligned}$

NRC II Report Recommendations

		Consequences
	Hardy-Weinberg Law:	The profile seems more rare than it actually is.
	includes possibility that the individual's two alleles are IBD ("inbreeding"):	The profile seems a little more rare than it actually is.
	includes possibility that an individual's alleles are IBD with each other or with other observed alleles in the population ("coancestry"):	The profile seems more common than it actually is.

[^0]
Cedar Crest College

Forensic Science Training Institute

[^0]: J. Buckleton, C.M. Triggs, S.J. Walsh. (2005). Forensic DNA Evidence Interpretation. CRC Press, London: pages 84-98.

