NEAFS Probabilistic DNA Mixture Interpretation Workshop Allentown, PA September 25-26, 2015 Probability Theory and Likelihood Ratios Simone Gittelson, Ph.D., simone.gittelson@nist.gov Michael Coble, Ph.D., michael.coble@nist.gov

Acknowledgement

I thank Michael Coble, Bruce Weir and John Buckleton for their helpful discussions.

Disclaimer

<u>Points of view in this presentation are mine</u> and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Blood groups:

0	А	В	AB
0.45	0.40	0.11	0.04
A. 0.016			
B. 0.36			
C 0 44			
D. 0.51			
E. 10			
		0% 0% 0%	0% 0% 0%
	, ,	10 ¹⁶ 0.3 ⁶ 0.4 ^A	5 ⁵⁷ 5 ⁵⁹ ¹ 9

3. What is the probability that a person drawn randomly from this population has a blood group that contains an A (groups A and AB) or a blood group that contains a B (groups B and AB)?

Tł	nird Lav	w of Prob	ability	
hair	color:			
	black	brown	red	blond
	0.16	0.46	0.12	0.26
eye	color:			
	brown	blue	hazel	green
	0.39	0.36	0.15	0.10
5.	What is the from this p	e probability tha opulation has b	it a person draw lond hair and bli	n randomly ue eyes?
a from: <u>http</u>	://data-sorcery.org/	2009/06/14/chi-square-tes	<u>t/</u>	

hair color:						
black	brow	n red		blond		
0.16	0.46		0.12	0.26		
eye color:						
	brown	blue	hazel	green		
black hair	0.69	0.17	0.10	0.04		
brown hair	0.46	0.24	0.20	0.10		
red hair	0.43	0.19	0.19	0.19		
blond hair	0.05	0.79	0.06	0.10		

Exercise 1: Likelihood Ratio

Write a sentence describing your likelihood ratio in words:

From Probabilities to Odds and
back again
$$odds = \frac{\Pr(H)}{\Pr(not H)} = \frac{\Pr(H)}{1 - \Pr(H)}$$
$$\Pr(H) = \frac{odds}{1 + odds}$$

Conditioning on the Framework of Circumstances

$$LR = \frac{\Pr(E|H_p, I)}{\Pr(E|H_d, I)}$$

The LR will vary according to the information in I.

It is therefore imperative for the forensic scientist to make explicit to the court what information makes up the *I* in his/her LR. If the court disagrees, or new information becomes available, the forensic scientist must re-assign the probabilities forming the LR conditioned on the new *I*.

