Probability Theory and Likelihood Ratios

Simone Gittelson, Ph.D., simone.gittelson@nist.gov
Michael Coble, Ph.D., michael.coble@nist.gov

Acknowledgement

I thank Michael Coble, Bruce Weir and John Buckleton for their helpful discussions.

Disclaimer

Points of view in this presentation are mine and do not necessarily represent the official position or policies of the National Institute of Standards and Technology.

Probability Theory

Vocabulary and Notation

EVENT

Vocabulary and Notation

PROBABILITY

: $\quad \operatorname{Pr}(R)$

\downarrow_{8}^{1}
$\operatorname{Pr}(E)$

$\operatorname{Pr}(S)$

$\operatorname{Pr}(H)$

Laws of Probability

Law \#1: A probability can take any value between 0 and 1, including 0 and 1.

certain

1 certainty that statement is true
0.75
0.66
0.5

EXAMPLE: rolling a 6 -sided die
$\operatorname{Pr}(1,2,3,4,5$ or 6$)=1$
$\operatorname{Pr}(7)=0$
0.33
0.25

0 certainty that statement is false impossible

Laws of Probability

Law \#2: The probability of event A or event B occurring is equal to the probability of event A plus the probability of event B minus the probability of event A and B.

$$
\operatorname{Pr}(A \text { or } B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \text { and } B)
$$

Second Law of Probability

Blood groups:

$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

1. What is the probability that a person drawn randomly from this population is blood group type A or $A B$?
2. What is the probability that a person drawn randomly from this population is not blood group type $A B$?
3. What is the probability that a person drawn randomly from this population is blood group type A or AB?

Blood groups:

$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

A. 0.016
B. 0.36
C. 0.44
D. 0.51
E. 10

2. What is the probability that a person drawn randomly from this population is not blood group type AB?

Blood groups:

\mathbf{O}	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

A. 0.04
B. 0.45
C. 0.51
D. 0.85
E. 0.96

0\%	0\%	0\%	0\%	0\%	0\%
5	∞	\square	ρ	∞	P
$00^{8 /}$			0.50	0 \%	0.9

Laws of Probability

Law \#2: The probability of event A or event B occurring is equal to the probability of event A plus the probability of event B minus the probability of event A and B.
$\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A$ and $B)$

A: rolling an odd number
B: rolling a number greater than 2

Second Law of Probability

Blood groups:

$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

3. What is the probability that a person drawn randomly from this population has a blood group that contains an A (groups A and $A B$) or a blood group that contains a B (groups B and $A B$)?
4. What is the probability that a person drawn randomly from this population has a blood group that contains an A (groups A and $A B$) or a blood group that contains a B (groups B and $A B)$?
Blood groups:

$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

A. 0.0204
B. 0.45
C. 0.55
D. 0.59
E. 14.75

0\%	0\%	0\%	0\%	0\%	0\%
∞	∞	∞	ω	∞	\cdots
0.00^{00}	00^{60}	0.5	0 ¢	00^{5}	$2^{0.0}$

Laws of Probability

Law \#3: The probability of event A and event B occurring is equal to the probability of event A times the probability of event B.

$$
\begin{aligned}
\operatorname{Pr}(A \text { and } B) & =\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A) \\
& =\operatorname{Pr}(B) \times \operatorname{Pr}(A \mid B)
\end{aligned}
$$

A: rolling an odd number
B: rolling a 3 or less

Conditional Probabilities

What is $\operatorname{Pr}(B) ? \quad \frac{10}{100}$
What is $\operatorname{Pr}(B \mid A) ? \quad \frac{10}{40}$

Third Law of Probability (independent events)

Blood groups:

$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

Rh factor:

+	-
0.82	0.18

4. What is the probability that a person drawn randomly from this population is blood group type A and $R h+$?
data from: http://www.redcrossblood.org/learn-about-blood/blood-types
5. What is the probability that a person drawn randomly from this population is blood group type A and $\mathrm{Rh}+$?

Blood groups:			
$\mathbf{0}$	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$
0.45	0.40	0.11	0.04

Rh factor:

+	-
0.82	0.18

A. 0.328
B. 0.4
C. 0.42
D. 0.82
E. 1.22

Third Law of Probability

hair color:

black	brown	red	blond
0.16	0.46	0.12	0.26
eye color:			
brown	blue	hazel	green
0.39	0.36	0.15	0.10

5. What is the probability that a person drawn randomly from this population has blond hair and blue eyes?

Third Law of Probability (dependent events)

hair color:

black	brown	red	blond
0.16	0.46	0.12	0.26

eye color of blond haired people:

brown	blue	hazel	green
0.05	0.79	0.06	0.10

5. What is the probability that a person drawn randomly from this population has blond hair and blue eyes?
6. What is the probability that a person drawn randomly from this population has blond hair and blue eyes?
hair color:

black	brown	red	blond	brown	blue	hazel	green
0.16	0.46	0.12	0.26	0.05	0.79	0.06	0.10

A. 0.013
B. 0.0936
C. 0.2054
D. 0.26
E. 1.05

Hardy-Weinberg Law

Homozygote

$$
\begin{aligned}
& \operatorname{Pr}(28,28) \quad \text { and } \\
& =\operatorname{Pr}(\text { paternal allele }=28) \times \operatorname{Pr}(\text { maternal allele }=28)
\end{aligned}
$$

Hardy-Weinberg Law

Heterozygote

$$
\operatorname{Pr}(13,16)
$$

$=\operatorname{Pr}(\text { paternal allele }=13)^{a n d} \times \operatorname{Pr}($ maternal allele $=16)$
${ }^{\circ r}+\operatorname{Pr}(\text { paternal allele }=16)^{\text {and }} \times \operatorname{Pr}($ maternal allele $=13)$

Laws of Probability

Law of total probability or the extension of the conversation:
The probability of event A can be partitioned into the sum of probabilities of event A conditioned on mutually exclusive and exhaustive events.

Law of Total Probability

hair color:

black	brown	red	blond
0.16	0.46	0.12	0.26

eye color:

	brown	blue	hazel	green
black hair	0.69	0.17	0.10	0.04
brown hair	0.46	0.24	0.20	0.10
red hair	0.43	0.19	0.19	0.19
blond hair	0.05	0.79	0.06	0.10

6. What is the probability that a person drawn randomly from this population has blue eyes?
7. What is the probability that a person drawn randomly from this population has blue eyes?
A. 0.000014
B. 0.17
C. 0.3658
D. 0.6506
E. 1

Conditional Probability

H : the animal is an elephant
E : the animal has four legs

H : This man is Santa Claus. E : This man has a white beard.

$$
\operatorname{Pr}(E \mid H)=?
$$

A. The probability that this
 man is Santa Claus given that he has a white beard.
B. The probability that this man has a white beard given that he is Santa Claus.
C. both A) and B) are correct
D. none of the above
E. I am completely lost

H : This man is Santa Claus.
E : This man has a white beard.
$\operatorname{Pr}(H \mid E)=$?
A. The probability that this
 man is Santa Claus given that he has a white beard.
B. The probability that this man has a white beard given that he is Santa Claus.
C. both A) and B) are correct
D. none of the above
E. I am completely lost

0\%	0\%	0\%	0\%	0\%
ζ	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	\longrightarrow
A.	B.	c.	D.	E.

H: This man is Santa Claus. E : This man has a white beard.

Is $\operatorname{Pr}(E \mid H)=\operatorname{Pr}(H \mid E)$?
A. Yes
B. No
C. I am completely lost

Likelihood Ratio

Single Contributor Stain

Cedar Crest College

Forensic Science Training Institute

There are two sides to every story...
H_{p} : The crime stain came from the
person of interest (POI).

prosecution's proposition
defense's
proposition

Conditional Probability

H_{p} : The crime stain came from the POI.
E : The DNA typing results of the crime stain and the POI's sample both show a peak for allele 8.

We have the DNA typing results of only one marker. This marker is called NEW, and we don't know anything about the alleles at this locus.

> crime scene:

Albert:

A) Yes
B) No
C) I need more information
D) I am completely lost

We have the DNA typing results of only one marker. This marker is called NEW.

Albert:

If Albert left this DNA on the crime scene, we would expect to observe a peak for allele 8.
The probability of this observation if Albert left this DNA on the crime scene is 1.

We have the DNA typing results of only one marker. This marker is called NEW.

Albert:

In the population of potential donors, 1 out of 10 people have genotype $\{8,8\}$.

Observation supports the proposition that Albert is the donor.

We have the DNA typing results of only one marker. This marker is called NEW.

Albert:

In the population of potential donors, everyone has genotype $\{8,8\}$.

Likelihood Ratio (LR)

given or if
\downarrow
$\operatorname{Pr}\left(E \mid H_{p}\right)$

$$
\operatorname{Pr}\left(E \mid H_{d}\right)
$$

the probability of observing the DNA typing results if the prosecution's proposition is true divided by
the probability of observing the DNA typing results if the defense's proposition is true.

Likelihood Ratio (LR)

$\underset{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{rr}\left(E \mid H_{d}\right)}$ $\operatorname{Pr}\left(E \mid H_{d}\right)$

The probability of observing the DNA typing results given that the prosecution's proposition is true
divided by
the probability of observing the DNA typing results given that the defense's proposition is true.

Likelihood Ratio (LR)

$\operatorname{Pr}\left(E \mid H_{p}\right)$ $\operatorname{Pr}\left(E \mid H_{d}\right)$ 1
if $\operatorname{Pr}\left(E \mid H_{p}\right)<\operatorname{Pr}\left(E \mid H_{d}\right)$
0

Likelihood Ratio (LR)

We have the DNA typing results of only one marker, called NEW.

If Albert left this DNA on the crime scene, we would expect to observe a peak for allele 8.
The probability of this observation if Albert left this DNA on the crime scene is 1 .

$$
\operatorname{Pr}\left(E \mid H_{p}\right)=1
$$

Likelihood Ratio (LR)

We have the DNA typing results of only one marker, called NEW.

In the population of potential donors, 1 out of 10 people have genotype $\{8,8\}$.
$\operatorname{Pr}\left(E \mid H_{p}\right)=1$
$\operatorname{Pr}\left(E \mid H_{d}\right)=\frac{1}{10}$

$$
L R=\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=\frac{1}{\frac{1}{10}}=10
$$

Likelihood Ratio (LR)

We have the DNA typing results of only one marker, called NEW.

Albert:

In the population of potential donors, everyone has genotype $\{8,8\}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(E \mid H_{p}\right)=1 \\
& \operatorname{Pr}\left(E \mid H_{d}\right)=1
\end{aligned} \quad L R=\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=\frac{1}{1}=1
$$

Likelihood Ratio (LR)

We have the DNA typing results of only one marker, called NEW.
crime scene:

In the population of potential donors, Albert is the only one who has genotype $\{8,8\}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(E \mid H_{p}\right)=1 \\
& \operatorname{Pr}\left(E \mid H_{d}\right)=0
\end{aligned} \quad L R=\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=\frac{1}{0}=\infty \text { infinity }
$$

individualization

Likelihood Ratio (LR)

We have the DNA typing results of only one marker, called NEW.

Albert:

In the population of potential donors, 1 out of 10 people have genotype $\{8,8\}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(E \mid H_{p}\right)=0 \\
& \operatorname{Pr}\left(E \mid H_{d}\right)=\frac{1}{10}
\end{aligned} \quad L R=\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=\frac{0}{\frac{1}{10}}=0
$$

exclusion

True or False?

$\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=100$, or abbreviated as $L R=100$

Given the available information, the probability of these DNA typing results is 100 times greater if the prosecution's proposition is true than if the defense's proposition is true.
B)

Given the available information, these DNA typing results indicate that the probability of the prosecution's proposition being true is 100 times greater than the probability of the defense's proposition being true.

$$
\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=100, \text { or abbreviated as } L R=100
$$

A. Given the available information, the probability of these DNA typing results is 100 times greater if the prosecution's proposition is true than if the defense's proposition is true.
B. Given the available information, these DNA typing results indicate that the probability of the prosecution's proposition being true is 100 times greater than the probability of the defense's proposition being true.

True or False?

$\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=100$, or abbreviated as $L R=100$

Given the available information, the probability of these DNA typing rosults is 100 times greater if the prosecution's proposition is true thar if the defense's proposition is true.

Given the available information, these DNA typing results indicate that the probability of the prosecution's proposition being true is 100 times greater than the probability of the defense's proposition being true.

Exercise 1: Likelihood Ratio

The DNA typing results of a biological stain recovered on a crime scene in Washington DC show the same genotype as that of a person of interest (POI) living in Washington DC. If the biological stain came from the POI, the forensic scientist would expect to obtain these typing results. According to population data, we would expect to see this genotype in one person out of 500,000 . The forensic scientist formulates:
H_{p} : The DNA recovered on the crime scene came from the POI.
H_{d} : The DNA recovered on the crime scene came from someone else, unrelated to the POI.
What is the likelihood ratio for these DNA typing results with regard to propositions H_{p} and H_{d} ?

Exercise 1: Likelihood Ratio

Write a sentence describing your likelihood ratio in words:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bayes' theorem

Logical Framework for Updating Uncertainty

H_{p} : The crime stain came from the POI.
H_{d} : The crime stain did not come from the POI. It came from some other person.
E : The DNA typing results of the crime stain and the POI's sample both show a peak for allele 8.

Logical Framework for Updating Uncertainty

 odds $\frac{\operatorname{Pr}\left(H_{p}\right)}{\operatorname{Pr}\left(H_{d}\right)}$:
$\mp \infty$ certainty that H_{p} is true

$3 \quad H_{p}$ is 3 times more probable to be true than H_{d}
$2 \quad H_{p}$ is 2 times more probable to be true than H_{d}
$1 H_{p}$ is just as probable to be true as H_{d}
$1 / 2 \quad H_{d}$ is 2 times more probable to be true than H_{p}
$1 / 3 \quad H_{d}$ is 3 times more probable to be true than H_{p}
0 certainty that H_{d} is true

From Probabilities to Odds and back again

$$
\begin{gathered}
\text { odds }=\frac{\operatorname{Pr}(H)}{\operatorname{Pr}(\text { not } H)}=\frac{\operatorname{Pr}(H)}{1-\operatorname{Pr}(H)} \\
\operatorname{Pr}(H)=\frac{\text { odds }}{1+o d d s}
\end{gathered}
$$

Transposed Conditional

$$
\frac{\operatorname{Pr}\left(H_{p}\right)}{\operatorname{Pr}\left(H_{d}\right)} \times \frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}=\frac{\operatorname{Pr}\left(H_{p} \mid E\right)}{\operatorname{Pr}\left(H_{d} \mid E\right)}
$$

The probability of these DNA typing results is 100 times greater if the prosecution's proposition is true than if the defense's proposition is true.

These DNA typing results indicate that the probability of the prosecution's proposition being true is 100 times greater than the probability of the defense's proposition being true.

Role of the Forensic Scientist

What is the probability of $\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}$ the analytical results if the prosecution's proposition is true?

What is the probability of the analytical results if the defense's proposition is true?

Role of the Forensic Scientist

The probability of obtaining $\frac{\operatorname{Pr}\left(E \mid H_{p}\right)}{\operatorname{Pr}\left(E \mid H_{d}\right)}$ stain came from the suspect is very close to 1.

The chance of obtaining these DNA results if the crime stain came from some other person, unrelated to the suspect, is 1 in 1 million.

Prosecutor's Fallacy

The fallacy is to transpose the conditional:

$$
\begin{gathered}
\operatorname{Pr}\left(E \mid H_{d}, I\right)=\operatorname{Pr}\left(H_{d} \mid E, I\right) \\
\text { or } \\
\frac{\operatorname{Pr}\left(E \mid H_{p}, I\right)}{\operatorname{Pr}\left(E \mid H_{d}, I\right)}=\frac{\operatorname{Pr}\left(H_{p} \mid E, I\right)}{\operatorname{Pr}\left(H_{d} \mid E, I\right)}
\end{gathered}
$$

Prosecutor's Fallacy

which means that a low $\operatorname{Pr}\left(E \mid H_{d}, I\right)$ is expressed
as a low $\operatorname{Pr}\left(H_{d} \mid E, I\right)$ or high $\frac{\operatorname{Pr}\left(H_{p} \mid E, I\right)}{\operatorname{Pr}\left(H_{d} \mid E, I\right)}$ when the
prior odds are not necessarily equal to 1 .

Defense Attorney's Fallacy

The fallacy is:

1. 200 individuals in the population plus the genotyped POI is equal to 201
2. To assume that each of these 200 individuals has the same prior probability of being the source of the crime stain as the POI
3. To assume that the actual number of individuals in this city having the genotype in question is equal to the expected number of individuals having this genotype. The actual number could be anywhere between 1 and 200,000.

Uniqueness Fallacy

The fallacy is:

1. 1 individual in the population plus the genotyped POI is equal to a total of two individuals
2. To assume that the actual number of individuals in this city having the genotype in question is equal to the expected number of individuals having this genotype. The actual number could be anywhere between 1 and 200,000.

Exercise 1: Moot Court

A) Correct
B) Transposed Conditional / Prosecutor's Fallacy
C) Defense Attorney's Fallacy
D) Uniqueness Fallacy
E) ???

Principles of Evidence Interpretation

1. To evaluate the uncertainty of a proposition, it is necessary to consider at least one alternative proposition.
2. Scientific interpretation is based on questions of the kind "What is the probability of the evidence given the proposition?"
3. Scientific interpretation is conditioned not only by the competing propositions, but also by the framework of circumstances within which they are to be evaluated.

Conditioning on the Framework of Circumstances

$$
L R=\frac{\operatorname{Pr}\left(E \mid H_{p}, I\right)}{\operatorname{Pr}\left(E \mid H_{d}, I\right)}
$$

where I is the available information

Conditioning on the Framework of Circumstances

$$
L R=\frac{\operatorname{Pr}\left(E \mid H_{p}, I\right)}{\operatorname{Pr}\left(E \mid H_{d}, I\right)}
$$

with I:
What do we know or assume about the offender? What population does the offender come from?

What are the genetic properties of this population? What do we know about the rarity of the observed genotype in this population?

Conditioning on the Framework of Circumstances

$$
L R=\frac{\operatorname{Pr}\left(E \mid H_{p}, I\right)}{\operatorname{Pr}\left(E \mid H_{d}, I\right)}
$$

The LR will vary according to the information in I.
It is therefore imperative for the forensic
 scientist to make explicit to the court what information makes up the I in his/her LR. If the court disagrees, or new information becomes available, the forensic scientist must re-assign the probabilities forming the LR conditioned on the new I.

