

Alabama's Internal Validation of the GlobalFiler STR Kit for Forensic Casework

Jason Kokoszka, PhD Forensic Biology Section Chief Alabama Department of Forensic Sciences Mobile Regional Laboratory

The GlobalFiler[™] Kits: 6-Dye Configuration

FBI's Quality Assurance Standards for Forensic DNA Testing Laboratories

- 8.3.1 For Internal Validation Studies:
 - a. Have internal validation studies been documented and summarized?
 - b. Have all internal validation studies conducted on or after July 1, 2009, included, as applicable:

1.	mock evidence sa			ence	samp	165 01	
		Yes		No		N/A	
2.	Reproducibility an	d preci	ision?				
		Yes		No		N/A	
3.	Sensitivity and sto	chastic	c stud	ies?			
		Yes		No		N/A	
4.	Mixture studies?						
		Yes		No		N/A	
5.	Contamination as	sessme	ent?				
		Yes		No		N/A	

Known and non probative evidence completion

Internal Validation Studies - Background

Current Kit (Casework): Detection Platform: 3130 Analytical Threshold:

Identifiler 3130 Genetic Analyzer 75 rfu

Test Kit: Detection Platform:

3500 Analytical Threshold:

GlobalFiler 3500 Genetic Analyzer (8 capillary) 175 rfu – starting point

First and Foremost... PCR Cycle Number and Post-Amplification Conditions Evaluation

•27, 28, and 29 amplification cycles were evaluated: Manufacturer's recommendation (29 cycles)

- 1. a dilution series of the 007 human male DNA control
- 2. a range of mixed DNA samples consisting of varying amounts of the 007 and 9947A human DNA controls

CRITERIA EVALUATED

- overall peak heights
- peak morphology
- presence of artifacts

- ability to detect the minor component of a mixture
- the overall success rate of each sample

First and Foremost... PCR Cycle Number and Post-Amplification Conditions Evaluation

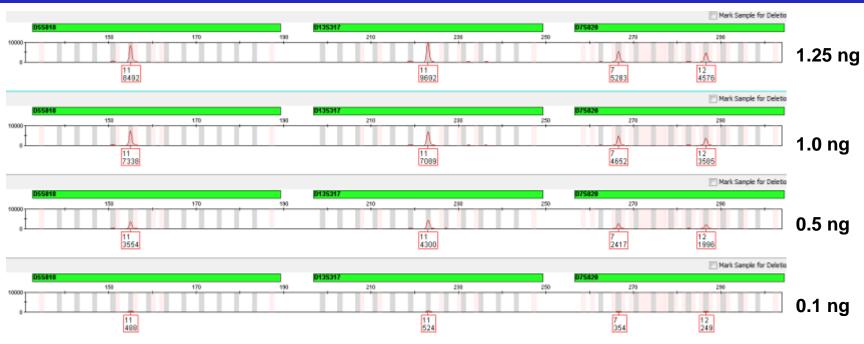
• *Post-Amplification conditions were evaluated* on the above samples using:

- 1. 1 μ l and 2 μ l of amplified product
- 2. 15 and 20 second injection times

CRITERIA EVALUATED

- overall peak heights
- peak morphology
- presence of artifacts

- ability to detect the minor component of a mixture
- the overall success rate of each sample


PCR Cycle Number and Post-Amplification Conditions Evaluation Sensitivity Studies

The following amounts of human DNA control 007 were tested:

1.5, 1.25, 1.0, 0.5, 0.1, 0.05 and 0.01 ng

• each sample was amplified for 27, 28, and 29 PCR cycles, in triplicate

• 1 μ l and 2 μ l of amplified product were injected for 15 secs and 20 secs

Sensitivity Studies-Alleles Detected

Average Number of 007 Alleles Detected (43 unique alleles)

		27 c	ycles			28 c	vcles		29 cycles				
Sample	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	
1.5 ng	43	43	43	43	43	43	43	43	43	43	43	43	
1.25 ng	43	43	43	43	43	43	43	43	43	43	43	43	
1.0 ng	43	43	43	43	43	43	43	43	43	43	43	43	
0.5 ng	43	43	43	43	43	43	43	43	43	43	43	43	
0.1 ng	10	17.3	10	20.3	34	39.3	32.3	40	41.3	42	41.3	42.3	
0.05 ng	0.3	1	0.7	1.3	9.7	16.3	8.7	16.3	21.3	29.7	24.3	32	
0.01 ng	-	-	-	-	-	-	-	-	0.3	1.7	-	2	

Sensitivity Studies-Alleles Detected

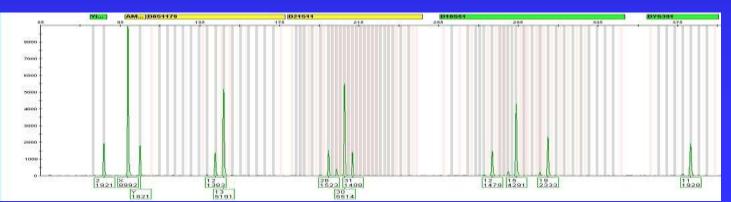
Average Number of 007 Alleles Detected (43 unique alleles)

		27 cy	/cles			28 cy	/cles		29 cycles				
Sample	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 μl 15 secs	2 µl 20 secs	
0.1 ng	10	17.3	10	20.3	34	39.3	32.3	40	41.3	42	41.3	42.3	
0.05 ng	0.3	1	0.7	1.3	9.7	16.3	8.7	16.3	21.3	29.7	24.3	32	

Goal: Maximize the data and Minimize the artifacts

Sensitivity Studies-Artifacts Detected

Number of Artifacts Detected (21 samples tested)


		27 cy	cles	I		28 cy	/cles		29 cycles				
Sample	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	
1.5 ng	-	1	-	1	-	-	-	-	-	4	-	3	
1.25 ng	-	-	-	-	-	-	-	-	-	1	1	1	
1.0 ng	-	-	-	-	-	-	-	-		-	-	1	
0.5 ng	-	-	-	-	-	-	-	-	3	2	2	2	
0.1 ng	-	-	-	-	-	-	-	-		-	-	-	
0.05 ng	-	-	-	1	-	-	-	-		-	-	-	
0.01 ng	-	-	-	-	-	-	-	-		-	-	-	

PCR Cycle Number and Post-Amplification Conditions Evaluation Mixture Studies

The human DNA controls 9947A and 007 were mixed in the following ratios:

1:0, 99:1, 79:1, 59:1, 39:1, 19:1, 9:1, 4:1, 3:2, 1:1, 2:3, 1:4, 1:9, 1:19, 1:39, 1:59, 1:79, 1:99, and 0:1

- *one (1) nanogram* of each mixture was amplified for 27, 28, and 29 PCR cycles, in triplicate
- 1 μ l and 2 μ l of amplified product were injected for 15 secs and 20 secs on the 3500 Genetic Analyzer

Mixture Studies-Alleles Detected

Average Number of 007 Alleles Detected (26 unique alleles)

		27 су	vcles			28 c	ycles		29 cycles				
MIXTURE 007:9947A	1 µl 15 secs	1 µl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 µl 20 secs	2 µl 15 secs	2 µl 20 secs	
99:1	26	26	26	26	26	26	26	26	26	26	26	26	
79:1	26	26	26	26	26	26	26	26	26	26	26	26	
59:1	26	26	26	26	26	26	26	26	26	26	26	26	
39:1	26	26	26	26	26	26	26	26	26	26	26	26	
19:1	26	26	26	26	26	26	26	26	26	26	26	26	
9:1	26	26	26	26	26	26	26	26	26	26	26	26	
4:1	26	26	26	26	26	26	26	26	26	26	26	26	
3:2	26	26	26	26	26	26	26	26	26	26	26	26	
1:1	26	26	26	26	26	26	26	26	26	26	26	26	
2:3	26	26	26	26	26	26	26	26	26	26	26	26	
1:4	22.3	25	23	25	26	26	26	26	26	26	26	26	
1:9	9.3	14	6.7	15	19	23	19.3	22.7	25.3	25.3	25.3	25.7	
1:19	0.7	2.3	0.7	2.7	8	12.3	9	13	17.7	19	18	20.7	
1:39	0	0	0	0	1.3	1.7	1.3	2.3	6.7	1.3	8.3	10.7	
1:59	0	0	0	0	0	0.3	0	0.3	3.7	4.7	4.3	6.3	
1:79	0	0	0	0	0.3	0.3	0.3	0.3	1.7	3.3	2	3.7	
1:99	0	0	0	0	0	0	0	0	0.7	1	0.7	1.3	

Mixture Studies-Alleles Detected

Average Number of 007 Alleles Detected (26 unique alleles)

		27 cy	ycles			28 cy	ycles		29 cycles				
MIXTURE 007:9947A	1 μl 15 secs	1 μl 20 secs	2 μl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 μl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 μl 15 secs	2 µl 20 secs	
1:4	22.3	25	23	25	26	26	26	26	26	26	26	26	
1:9	9.3	14	6.7	15	19	23	19.3	22.7	25.3	25.3	25.3	25.7	
1:19	0.7	2.3	0.7	2.7	8	12.3	9	13	17.7	19	18	20.7	
1:39	0	0	0	0	1.3	1.7	1.3	2.3	6.7	1.3	8.3	10.7	
1:59	0	0	0	0	0	0.3	0	0.3	3.7	4.7	4.3	6.3	
1:79	0	0	0	0	0.3	0.3	0.3	0.3	1.7	3.3	2	3.7	
1:99	0	0	0	0	0	0	0	0	0.7	1	0.7	1.3	

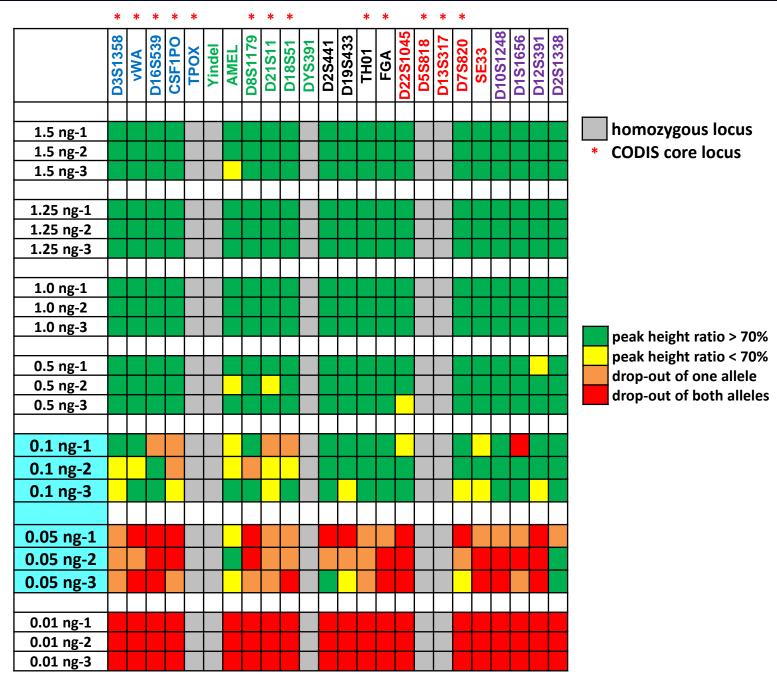
Goal: Maximize the data and Minimize the artifacts

Mixture Studies-Artifacts Detected

Number of Artifacts Detected (57 samples tested)

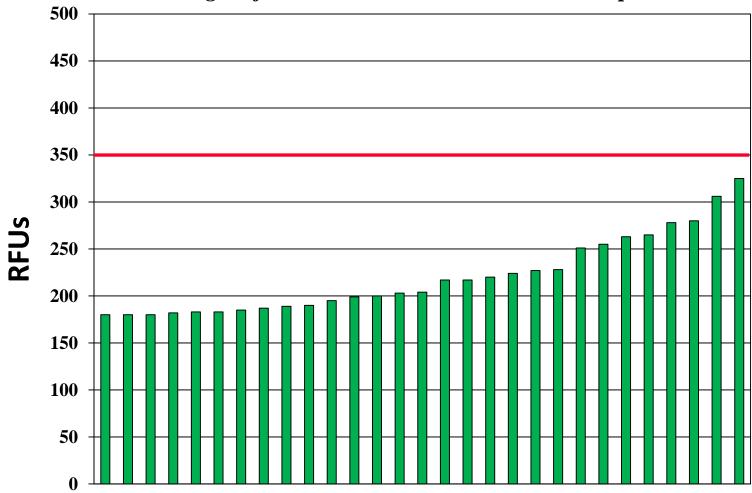
		27 c	ycles			28 cy	/cles		29 cycles				
	1 μl 15 secs	1 μl 20 secs	2 μΙ 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	1 μl 15 secs	1 μl 20 secs	2 µl 15 secs	2 µl 20 secs	
Pull-up	-	-	-	-	-	-	-	-	1	7	4	10	
Background	-	-	-	-	-	-	-	-	1	2	1	5	
Hi-ST	-	-	-	-	-	2	3	3	9	8	6	7	
Hi-ST %	-	-	-	-	-	12.4%	12.6%	12.4%	22.8%	23.2%	17. <mark>9</mark> %	22.2%	

Hi-ST mainly at FGA – 11.55% cutoff

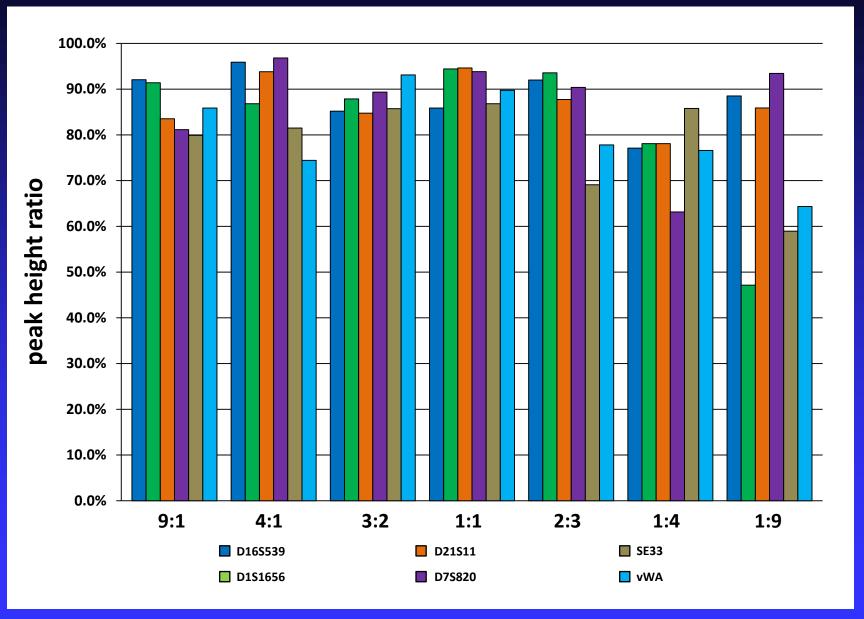

Results of the PCR Cycle Number and Post-Amplification Conditions Evaluation

- Optimal Number of PCR cycles: 28
- <u>Post-Amplification Conditions</u>:
 2 μl of amplified product with 20 second injections

28 PCR cycles with 2 µl of amplified product injected for 20 seconds maximized the data obtained while minimizing artifacts that would complicate downstream interpretations (i.e. Mixtures)


These analysis parameters were then used to assess Stochastic Effects (PHR and allele dropout) in the overall sensitivity and mixture studies

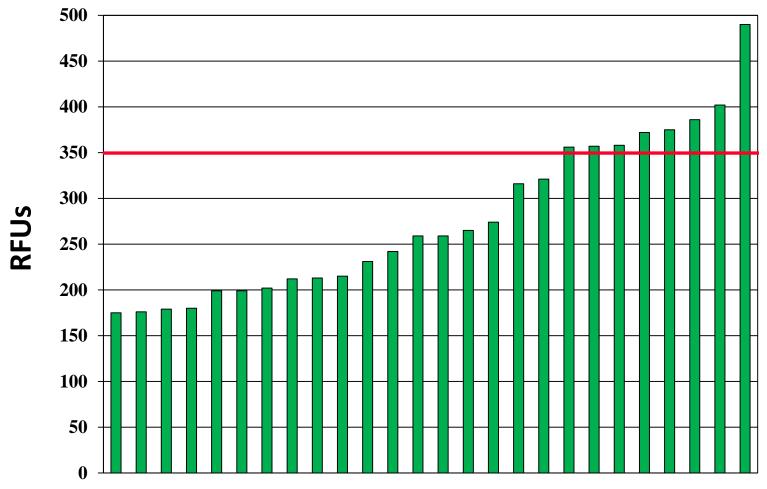
PHR Heat Map-Stochastic Effects


Sensitivity Studies-Allele Dropout

Peak Height of Detected Allele at a Locus with Dropout

- analytical threshold of 175 RFUs utilized
- 399 total heterozygote loci
- at <u>84</u> of the 399 loci all detected alleles were less than 500 RFUs
- at <u>29</u> of the 84 loci one allele dropped-out

007 PHR in mixtures (007:9947A)-Stochastic Effects



9947A PHR in mixtures (007:9947A)-Stochastic Effects

Mixtures Studies-Allele Dropout

Peak Height of Detected Allele at a Locus with Dropout

- analytical threshold of 175 RFUs utilized
- 306 total loci with non-overlapping heterozygote alleles
- at 53 of the 306 loci all detected alleles were less than 500 RFUs
- at <u>26</u> of the 53 loci one allele dropped-out

Known and Non-Probative Evidence Samples

Previously extracted non-probative evidence samples, which mimic other sample types routinely encountered in forensic casework, were tested with the GlobalFiler STR Kit. The results obtained using GlobalFiler were compared to those previously obtained with the Identifiler STR Kit.

<u>The sample types included in this study included</u>: -sexual assault samples (VS, condom, bedding, and panties) -wearer items

- -cigarette butts
- -bottle/can swabs
- -blood swabs
- -degraded/inhibited samples
- -reference samples (buccal swabs and blood cards)

Known and Non-Probative Evidence Samples

GlobalFiler:

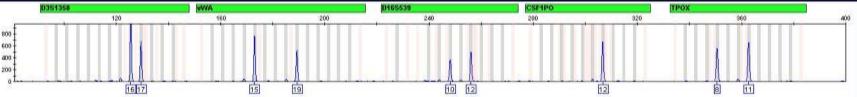
- tests 24 loci
- 21 loci are autosomal STRs
 -12 loci < 250 bp

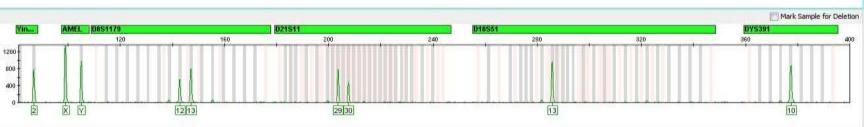
Identifiler:

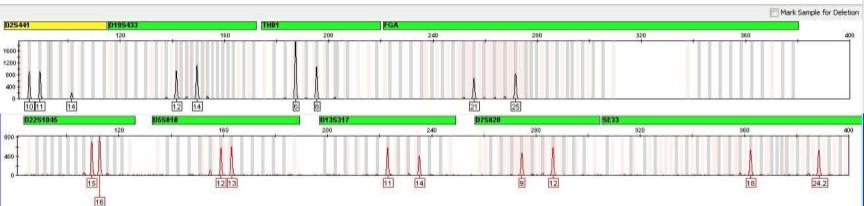
- tests 16 loci
- -15 loci are autosomal STRs
- 9 loci < 250 bp

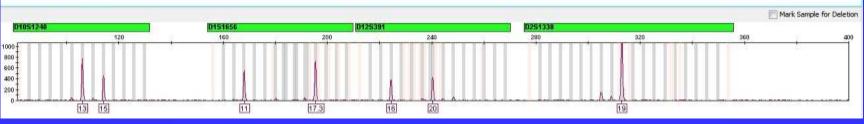
variables:

- input volume differences (10ul vs 15ul)
- chemistry differences between the GF and ID kits
- 3500 and 3130 differences
 - injection parameters
 - analysis algorithms



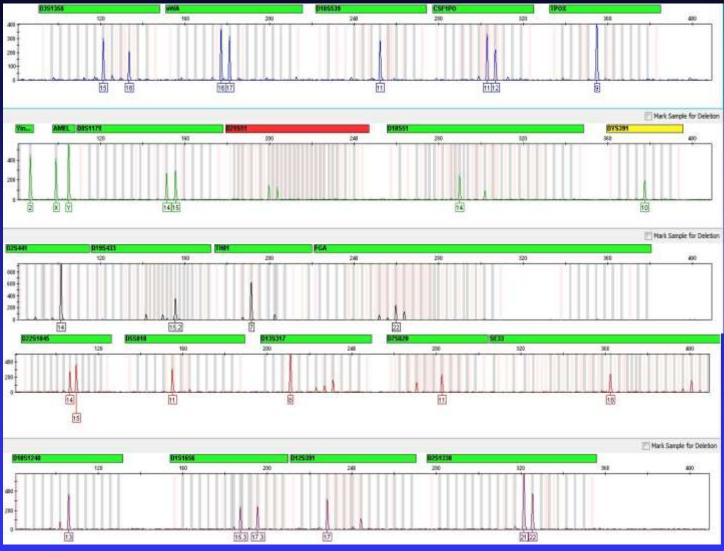

- Great concordance between GlobalFiler and Identifiler
- More information from GlobalFiler due to the additional dye and the number of loci < 250 bp
- GlobalFiler much more effective in overcoming inhibition and degradation


1) Semen stain from a quilt


- 0.041 ng/µl
- 0.41 ng amplified with Identifiler
- maximum injection parameters on the 3130 (2 μ l/ 9 secs)
- partial male DNA profile (10 loci of data with 7 of the CODIS core)

GlobalFiler

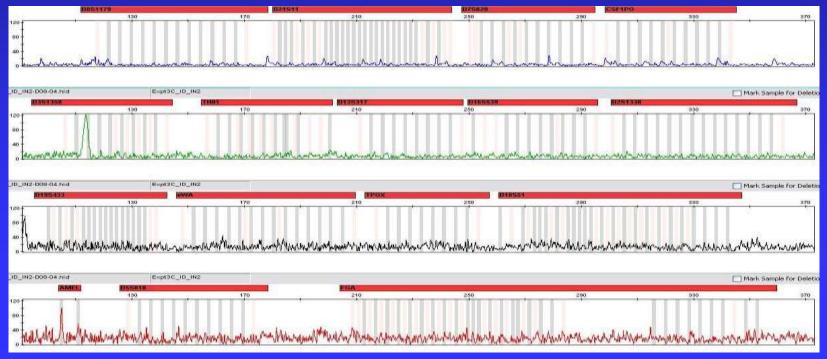
- 0.62 ng amplified with GlobalFiler
- full male DNA profile (13 CODIS core)


Known and Non-Probative Evidence Samples

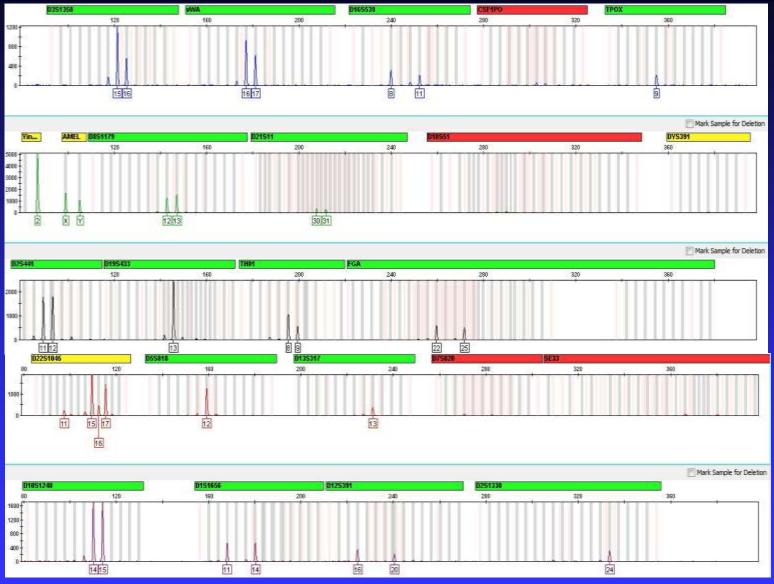
2) Semen stain from a pair of panties

- 0.0091 ng/µl
- <u>0.09 ng</u> amplified with Identifiler
- maximum injection parameters on the 3130 (2 μ l/ 9 secs)
- partial male DNA profile
- <u>12 loci of data with 9 of the CODIS core</u>

GlobalFiler

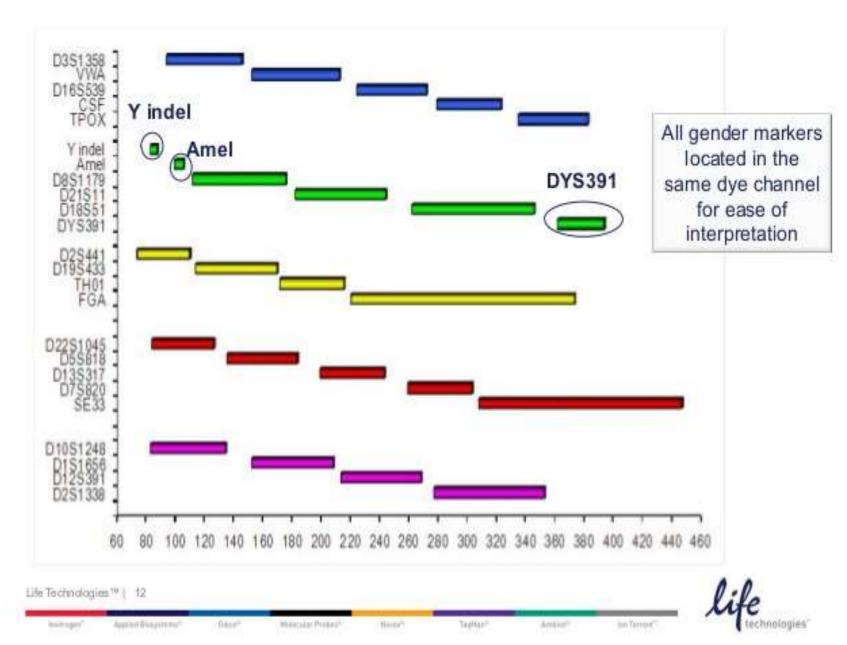

- <u>0.14 ng</u> amplified with GlobalFiler
- partial male DNA profile
- 23 loci of data and 12 CODIS core

Known and Non-Probative Evidence Samples

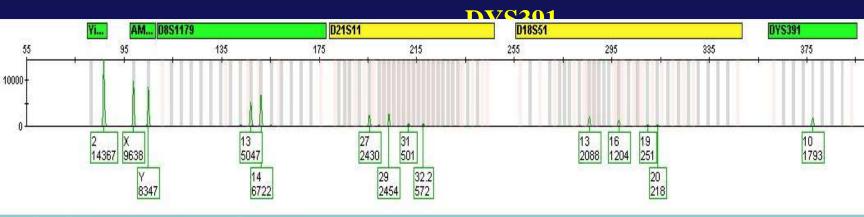

3) Swabbing of a concrete block

- 0.17 ng/µl
- 1 ng amplified with Identifiler
- standard injection on the 3500 (1 μ l/15 secs)
- no results

• inhibition suspected due to extract color



GlobalFiler

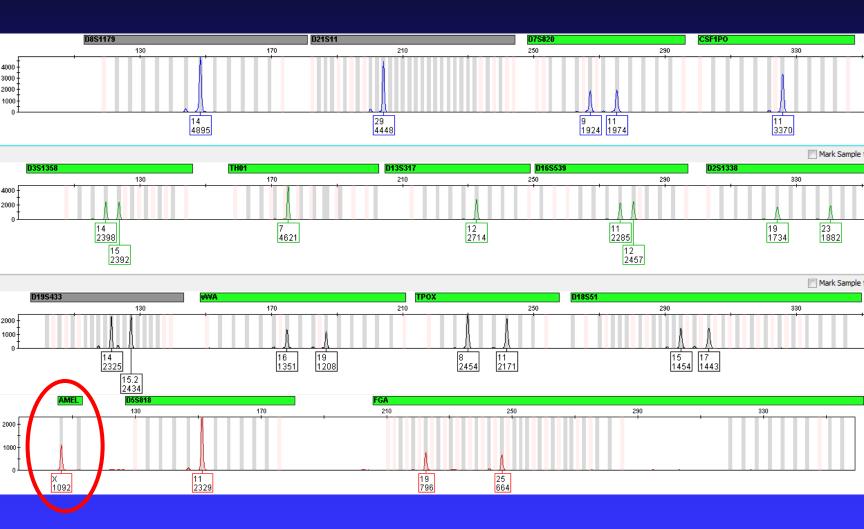


- 1 ng amplified with GlobalFiler
- partial DNA profile (19 loci of data; 10 CODIS core)

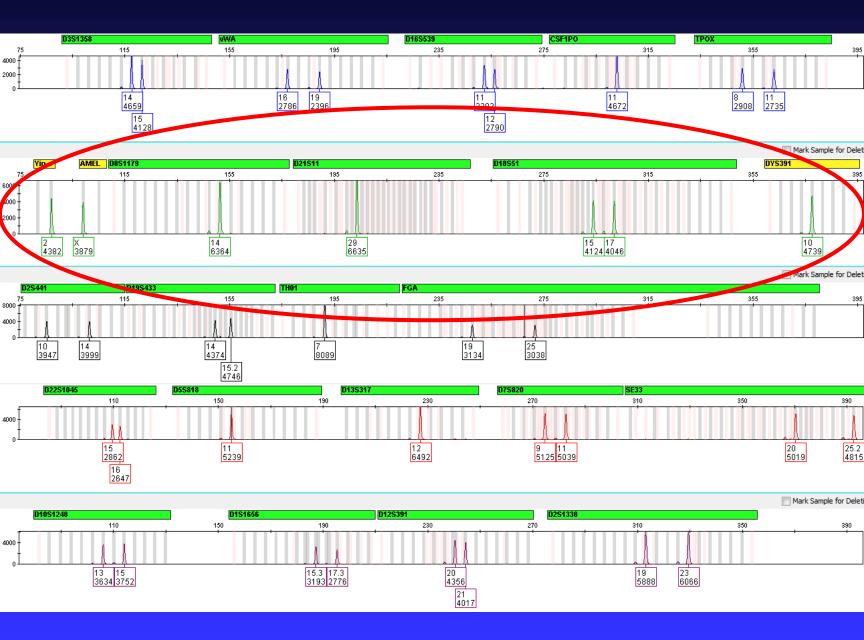
The GlobalFiler[™] Kits: Configuration



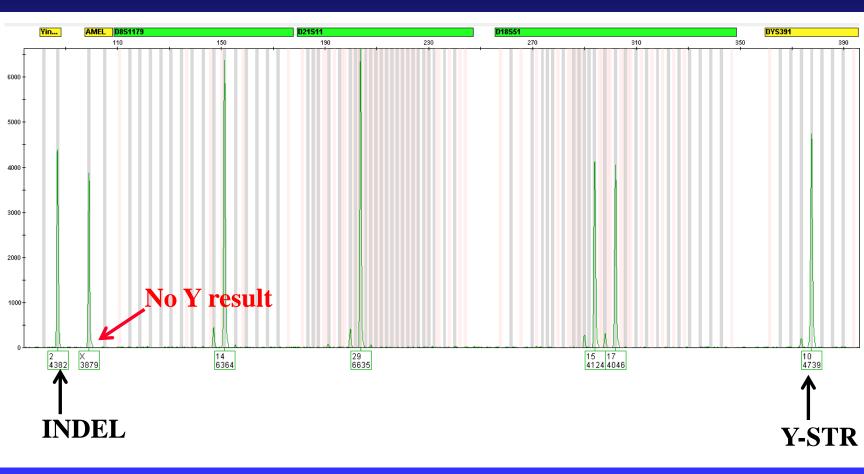
Mixture Studies-Male Gender Marker


-mixture containing at least 1 male

10 allele


10 and 11 alleles

Male Gender Marker Redundancy-Identifiler



DNA reference sample from a self-identified male

Male Gender Marker Redundancy-GlobalFiler

Male Gender Marker Redundancy-GlobalFiler

Reproducibility, Precision, and Accuracy

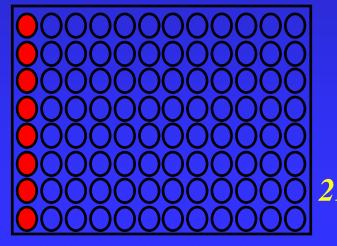
Precision: characterizes the amount of agreement among a series of individual (or <u>repeated</u>) measurements

-Precision does not relate to the *accuracy* of the measurements

Accuracy: describes how close the measured values are to the true value

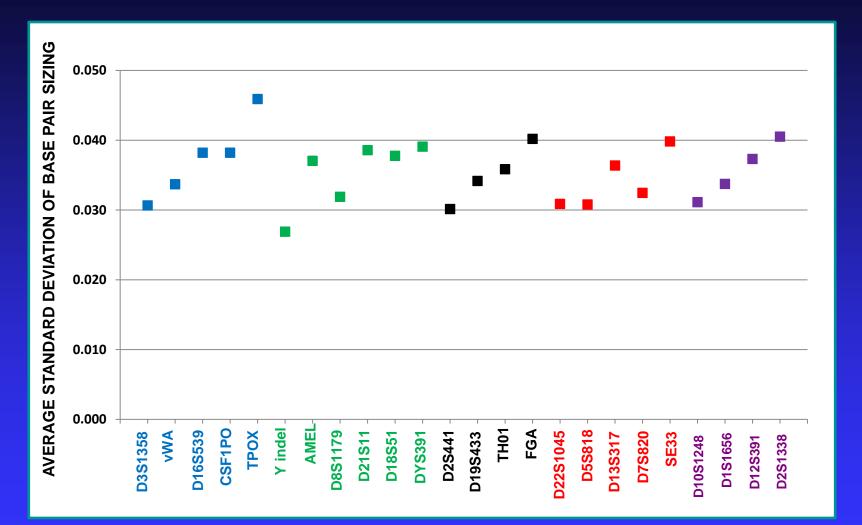
Low Precision Low Accuracy

High Precision Low Accuracy


High Precision High Accuracy

Reproducibility and Precision Study Design

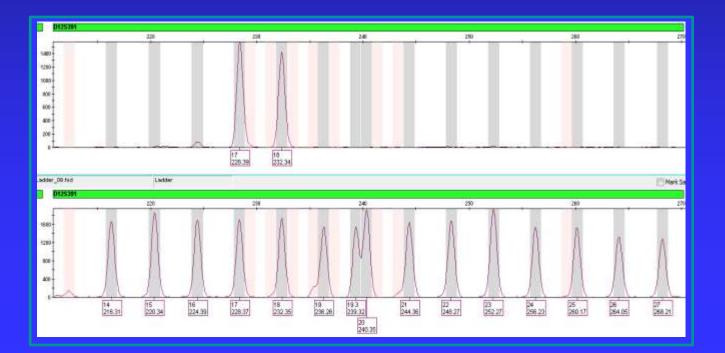
GlobalFiler allelic ladder was prepared in one column and injected eight (8) times on the 3500 Genetic Analyzer


-<u>size determinations</u> were conducted on all alleles of the ladder for each injection

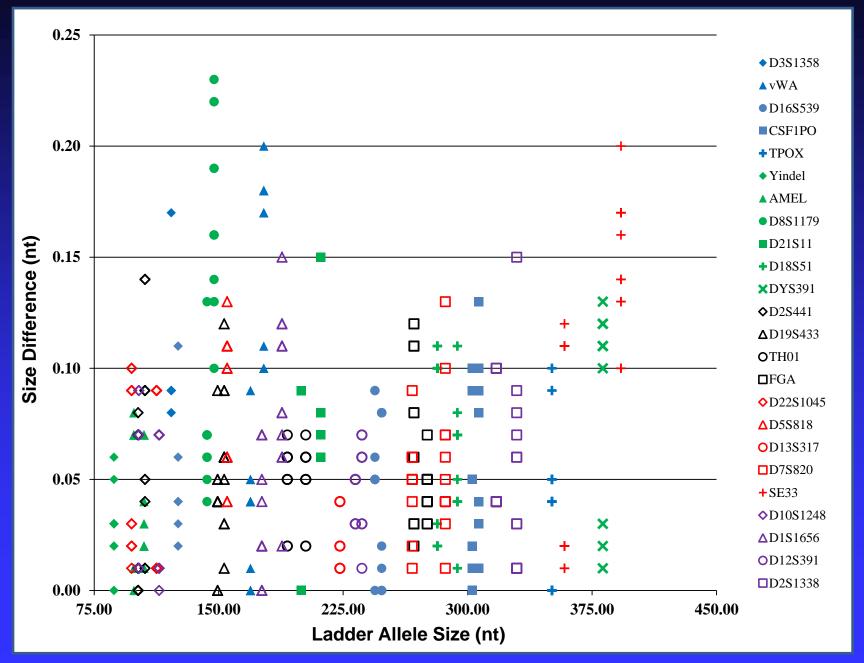
-<u>standard deviations</u> in base pair sizing were calculated for each allele in the ladder

GlobalFiler allelic ladder – 343 alleles across 24 loci 2,744 alleles per 8-cap injection 21,952 alleles per run of 8 injections

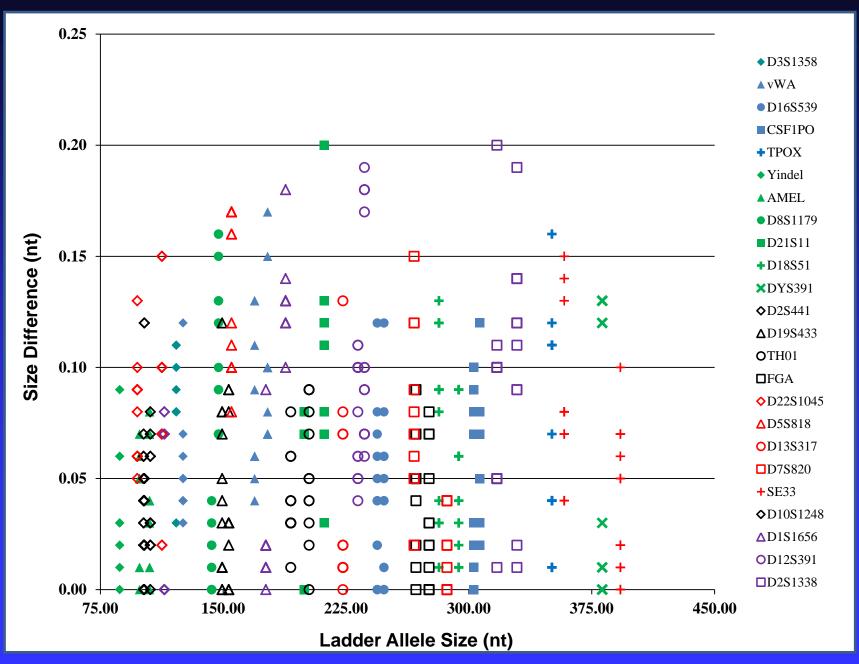
Reproducibility and Precision of GlobalFiler Allelic Ladder

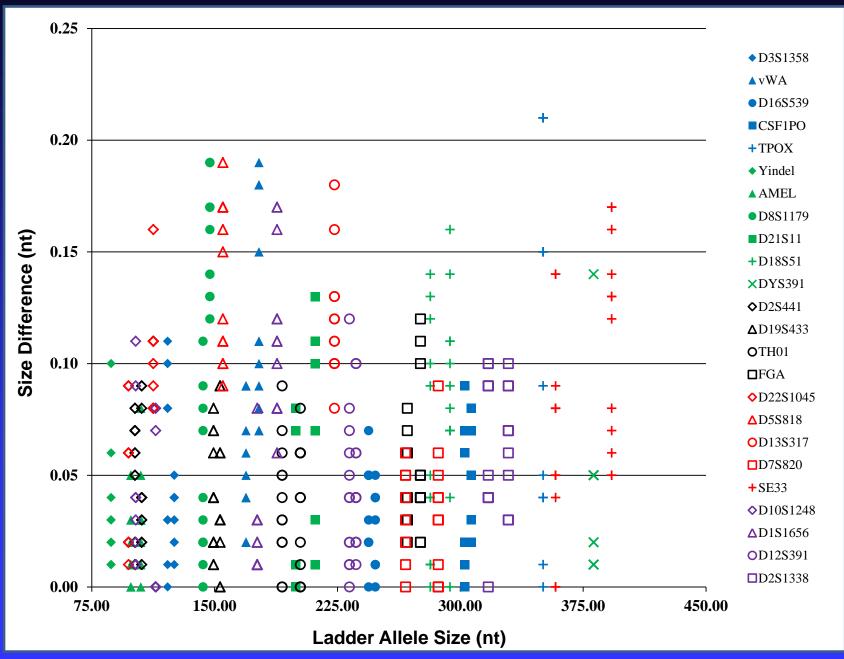

-standard deviation was averaged across all the alleles at each locus

Accuracy Study Design


One (1) ng of the 007 Human DNA control was amplified concurrently four times with each amplified product prepared for electrophoresis in triplicate for a total of twelve (12) samples. The twelve (12) samples were injected on three separate days generating data for thirty-six (36) samples across three separate runs.

Accuracy: describes how close the measured values are to the true value


The measurement of each allele in the 007 sample was compared to the measurement of the corresponding allele in the GlobalFiler allelic ladder


Accuracy Study Day 1

Accuracy Study Day 2

Accuracy Study Day 3

Final Thoughts

Mixture studies:

- nearly complete minor component could be detected in the 1:9 and 9:1 mixture samples
- significant minor component detected in the *1:19 and 19:1* mixture samples.

Sensitivity and stochastic studies:

- nearly complete DNA profiles were obtained from 100 pg of template
- significant data was obtained from as low as **50 pg** of template.

Final Thoughts

Casework samples:

- Great concordance between DNA profiles previously obtained with Identifiler
- GlobalFiler very successful in overcoming both inhibition and degradation.

Reproducibility and precision of GlobalFiler on the ABI 3500: the standard deviation across multiple allelic ladder injections was < 0.05 bp.

Accuracy of the GlobalFiler STR Kit on the ABI 3500:

all alleles detected from the 007 sample across three separate 3500 runs were within \pm 0.25 bp of the allelic ladder measurement.

Acknowledgements

Jacquelyn M. Jenkins, PhD, MSFS Forensic Scientist Birmingham Regional Laboratory

Angelo Della Manna, MSFS Assistant Director Chief of Forensic Biology & DNA A.Dellamanna@adfs.alabama.gov

Alabama Department of Forensic Sciences