

ISHI Workshop on New Loci and Kits

October 10, 2013 (Atlanta, GA) New Autosomal and Y-STR Loci and Kits: Making Data Driven Decisions

Experience with PowerPlex Fusion

Jeffrey Nye

Michigan State Police

Michigan State Police STR Kit Chemistry History

- Transitioned from RFLP directly to STRs
- Initial casework kits included AMPFeSTR Blue, Green I and II
 - Provided 9 STR Loci
- Casework moved to Profiler Plus/Cofiler
 - Provided 13 STR Loci
- Database group utilized PowerPlex 16
 - Provided 13 STR Loci plus Penta E and Penta D
- Casework moved to PowerPlex 16 HS in 2011
 - Interest in capturing Penta E and Penta D markers
 - Detailed comparison of Identifiler Plus and PowerPlex 16 HS

PowerPlex Fusion

- Interest in looking at extended STR Loci panels
- Currently use 3130 and 3130xl Genetic Analyzer
 platforms
 - Contracts to purchase 3500s being established
- Offender database of 300,000+ include Penta loci

Casework and Database units

Studies completed include:

- Precision
- Sensitivity
- Baseline noise evaluation
- Contamination Assessment
- Mock Casework
- Mixtures
- Concordance
- NIST SRM

Validation at One Laboratory (Recently Completed) Performance Verification Studies at Two Casework Laboratories and Our Databasing Laboratory

Training, Competency Testing and Planned Implementation System-wide.

Internal Validation Precision

Ladders were run multiple times over a few days. All capillaries were tested.

A table in GMID was created and exported as a tabdelimited file for import into Microsoft Excel

The average bp size and standard deviation were calculated for each allele of each locus

Internal Validation Precision

In general:

Smaller loci are averaging differences approximately 0.03 to 0.05bp

Larger loci (FGA, PentaE, PentaD) are averaging 0.08-0.09bp

Well below 0.5bp window

Contamination Assessment and **Baseline Noise Evaluation**

40 Reagent Blanks were amplified

- Stain Extraction Blanks
- Maxwell Extraction Blanks
- Epithelial Extraction Blanks Sperm Fraction Blanks
- Run on 3130
- Analyzed at 5 rfu
- GMID table created and exported to Excel
- Average Peak height was 5.8rfu +/- 3.2 rfu
- A few peaks were labeled > 25 rfu

Internal Validation Sensitivity

3 samples of extracted DNA were used (Many heterozygous loci)

Samples were quantified using Plexor HY

Serial dilutions were made

Each dilution was quantified in triplicate

Replicates were amplified. (Range of >1ng to ~ 8 pg)

Internal Validation Sensitivity

Samples less than 0.5 ng were amplified 12 times each

Data was reviewed for imbalance and dropout

Full profiles consistently down to 125pg

Increase in concentration = better PHR

Mixtures

Mixtures prepared from extracted reference sample DNA

Ratios from 100:0 to 0:100 were prepared with an input template amount of 0.75ng

Amplified product was ran on a 3130 with a standard 5 second injection time

Minor donor detected at all mixture ratios

Internal Validation Casework

Fortunate to be able to use actual casework samples

More than 40 cases have been analyzed with Fusiononly able to show a small portion here

Concordant data overall

] [0	
Description	Quantification Value	Description	Quantification Value	
		swab of cords	0.1730	
Left Hand Fingernail Scrapings	0.0304	swab of bottle	0.5870	
	0.4650	swab of sweatshirt	0.5490	
Right Hand Fingernall Scrapings	0.1650	swab of mouth of water bottle	3.2800	
swabbings from gray hat	0.0074	blood from camp fuel can	0.7290	
swab of piece of glove	0.0702	envelope cutting	0.3710	
swab of water bottle	0.3330	blood from glass	0.5560	
swab of Miller Lite bottle	0.0118	suspected flesh	5.1500	
swab of hat	1.0500	cigarette butt	2.9100	
swab of Gatorade bottle	0.0077	blood from POE	0.4110	
swab of Stanley tool	0.0071	blood from lottery slip	0.1550	
swab of glove (under TV)	0.5710	blood from broken window	0.6800	
swab of glove (parking lot)	1.8300	blood from computer bag	0.1840	
Cigarette Butt	0.1210	blood from broken window	0.3430	
Cigarette Butt	0.0916	blood from floor	4.0500	
Leather Apron - Lower Left	ron - Lower Left 0.3520		Quantification	
Leather Apron - Lower Left Corner	0.1330	Description	Value	Y Quant
Leather Apron - Upper Center	0.0064	Vaginal / Cervical - EF	1.1200	0.0075
swab from inside stairs	1.1900	Anal / Rectal - EF	1.3400	0.0250
cigarette	2.4200	Vaginal / Cervical - EF	1.1900	N/A
blood from jewelry box	0.5510	Vaginal - EF	0.6990	0.0940
blood from kitchen table	0.2680	Vaginal - EF	1.0900	N/A
blood from glass	0.1160	Vaginal / Cervical - SF	2.3900	5.0700
cigarette butt (8A)	0.5890	Anal / Rectal - SF	0.1570	0.3490
cigarette butt (CPeak-1)	4.4800	Vaginal / Cervical - SF	10.3000	0.0080
blood from air bag	0.1400	Vaginal - SF	9.3700	9.3800
blood on gift card sleeve	0.1150	Vaginal - SF	6.8100	0.0346

Fusion: Fingernail Scrapings 10 total markers interpretable

NIST Standards Concordance

- NIST sample set 2931b was amplified with Fusion chemistry.
- All profiles obtained were concordant with the published profiles for the various components provided in the kit.

NIST Standards Concordance

· 2800M

Sample Name	Marker	Allele 1	Allele 2	Certified Value
2800M071713 [3 sec]	CSF1PO	12	28	12,12
2800M071713 [3 sec]	D3S1358	17	18	17,18
2800M071713 [3 sec]	D5S818	12		12,12
2800M071713 [3 sec]	D7S820	8	11	8,11
2800M071713 [3 sec]	D8S1179	14	15	14,15
2800M071713 [3 sec]	D13S317	9	- 11	9,11
2800M071713 [3 sec]	D16S539	9	13	9,13
2800M071713 [3 sec]	D18S51	16	18	16,18
2800M071713 [3 sec]	D21S11	29	31.2	29,31.2
2800M071713 [3 sec]	FGA	20	23	20,23
2800M071713 [3 sec]	TH01	6	9.3	6,9.3
2800M071713 [3 sec]	ΤΡΟΧ	11		11,11
2800M071713 [3 sec]	vWA	16	19	16,19
2800M071713 [3 sec]	AMEL	Х	Y	X,Y
2800M071713 [3 sec]	Penta D	12	13	12,13
2800M071713 [3 sec]	Penta E	7	14	7,14
2800M071713 [3 sec]	D2S1338	22	25	22,25
2800M071713 [3 sec]	D19S433	13	14	13,14
2800M071713 [3 sec]	D10S1248	13	15	13,15
2800M071713 [3 sec]	D2S441	10	14	10,14
2800M071713 [3 sec]	D22S1045	16		16,16
2800M071713 [3 sec]	D12S391	18	23	18,23
2800M071713 [3 sec]	D1S1656	12	13	12,13
2800M071713 [3 sec]	DYS391	10		10,10

- NIST Standards Concordance
 - Genomic DNA 3

Sample Name	Marker	Allele 1	Allele 2	Allele 3	Certified Value
303 - Genomic DNA 3 [3 sec]	CSF1PO	11	12		11,12
303 - Genomic DNA 3 [3 sec]	D3S1358	9 (95 RFU = 2.7%)	15		15,15
303 - Genomic DNA 3 [3 sec]	D5S818	11		7/12	11,11
303 - Genomic DNA 3 [3 sec]	D7S820	12	13		12,13
303 - Genomic DNA 3 [3 sec]	D8S1179	14	15 (287 RFU = 12.1%)	16	14,16
303 - Genomic DNA 3 [3 sec]	D13S317	11	12		11,12
303 - Genomic DNA 3 [3 sec]	D16S539	11	12		11,12
303 - Genomic DNA 3 [3 sec]	D18S51	16	20		16,20
303 - Genomic DNA 3 [3 sec]	D21S11	28	31.2		28,31.2
303 - Genomic DNA 3 [3 sec]	FGA	23	25		23,25
303 - Genomic DNA 3 [3 sec]	TH01	9.3		100 1	9.3,9.3
303 - Genomic DNA 3 [3 sec]	ТРОХ	8	11	and the second	8,11
303 - Genomic DNA 3 [3 sec]	vWA	18	19	The set	18,19
303 - Genomic DNA 3 [3 sec]	AMEL	X	γ		X,Y
303 - Genomic DNA 3 [3 sec]	Penta D	11	12		11,12
303 - Genomic DNA 3 [3 sec]	Penta E	13	14		13,14
303 - Genomic DNA 3 [3 sec]	D2S1338	20	24		20,24
303 - Genomic DNA 3 [3 sec]	D19S433	12	14		12,14
303 - Genomic DNA 3 [3 sec]	D10S1248	13	16		13,16
303 - Genomic DNA 3 [3 sec]	D2S441	10	14		10,14
303 - Genomic DNA 3 [3 sec]	D22S1045	15	16		15,16
303 - Genomic DNA 3 [3 sec]	D12S391	15	21		N/A
303 - Genomic DNA 3 [3 sec]	D1S1656	14	15		N/A
303 - Genomic DNA 3 [3 sec]	DYS391	10		1000	N/A

- NIST Standards Concordance
 - Genomic DNA 10 (GM09948)

Sample Name	Marker	Allele 1	Allele 2	Allele 3	Certified Value
310 - Genomic DNA 10 [3 sec]	CSF1PO	10	11	12	10,11,12
310 - Genomic DNA 10 [3 sec]	D3S1358	15	17	and the second second	15,17
310 - Genomic DNA 10 [3 sec]	D5S818	11	13	77/11	11,13
310 - Genomic DNA 10 [3 sec]	D7S820	11			11,11
310 - Genomic DNA 10 [3 sec]	D8S1179	12	13		12,13
310 - Genomic DNA 10 [3 sec]	D13S317	11	E C		11,11
310 - Genomic DNA 10 [3 sec]	D16S539	11			11,11
310 - Genomic DNA 10 [3 sec]	D18S51	15	18		15,18
310 - Genomic DNA 10 [3 sec]	D21S11	29	30		29,30
310 - Genomic DNA 10 [3 sec]	FGA	24	26		24,26
310 - Genomic DNA 10 [3 sec]	TH01	6	9.3	1 191 1	6,9.3
310 - Genomic DNA 10 [3 sec]	ТРОХ	8	9	1 and a start	8,9
310 - Genomic DNA 10 [3 sec]	vWA	17			17,17
310 - Genomic DNA 10 [3 sec]	AMEL	Х	Y		X,Y
310 - Genomic DNA 10 [3 sec]	Penta D	8	12		8,12
310 - Genomic DNA 10 [3 sec]	Penta E	11	A She		11,11
310 - Genomic DNA 10 [3 sec]	D2S1338	23			23,23
310 - Genomic DNA 10 [3 sec]	D19S433	13	14		13,14
310 - Genomic DNA 10 [3 sec]	D10S1248	12	15		12,15
310 - Genomic DNA 10 [3 sec]	D2S441	11	12		11,12
310 - Genomic DNA 10 [3 sec]	D22S1045	16	17 (225 RFU = 16.9%)	18	16,18
310 - Genomic DNA 10 [3 sec]	D12S391	18	24	24.3 (112 RFU = 4.5%)	N/A
310 - Genomic DNA 10 [3 sec]	D1S1656	14	17		N/A
310 - Genomic DNA 10 [3 sec]	DYS391	10		1500 - 1600	N/A

•INTERNAL VALIDATION Direct Amplification of Knowns

- Vary amount of swab
 - \circ Cotton Swab 1 swab, $\frac{1}{2}$ swab, $\frac{1}{4}$ swab
 - Omni Swab 2 teeth, 1 tooth, ½ tooth
- Cycle Number Optimization
 - 30 Cycles / 27 Cycles / 25 Cycles
- Procedure:
 - Add 1 mL of swab solution to swab amounts listed above.
 - Place samples in 70 C hot plate for 30 minutes.
 - Use 1 uL of solution for amp 1 and 2 uL solution for amp 2.
 - Amp samples at same cycle / extension as evidence cycle parameters. (30 cycles)
 - Additional Amps performed at 27, 26, and 25 Cycles

Direct Amplification of Knowns

Artifact Assessments

Additional Studies

Comparison of artifacts

Additional Studies

Comparison of artifacts

Additional Studies

Comparison of artifacts

Considerations for Selecting a Kit

- One kit vs. two kits
- 5 dye vs. 6 dye
- Familiarity

- Software changes
- Ease of Direct Amplification
- Support

- Use of Pentas
- Cost
- Required CODIS loci (No changes yet)

ACKNOWLEDGEMENTS

Thank you to Promega Corporation for asking us to participate and all of the other collaborators on the project.

A special thanks to Kirk DeLeeuw, Josh Strong, Donald Yet and Kristin Schelling for all of the effort in conducting the internal validation.