2012 Mixture Interpretation Workshop:

Mixtures Using SOUND Statistics, Interpretation, & Conclusions

Probabilistic Genotyping

Michael D. Coble

October 15, 2012

Nashville, TN

Next Issue of FSI-Genetics

Forensic Science International: Genetics xxx (2012) xxx-xxx

Editorial

Focus issue—Analysis and biostatistical interpretation of complex and low template DNA samples

Article in press...

DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods

P. Gill^{a,b,*}, L. Gusmão^c, H. Haned^d, W.R. Mayr^e, N. Morling^f, W. Parson^g, L. Prieto^h, M. Prinzⁱ, H. Schneider^j, P.M. Schneider^k, B.S. Weir¹

ISFG Recommendations Pr(D) = Prob. Drop-out (het) Pr(D) = No Prob. Drop-out (het) a b $Pr(D_2) = Prob. Drop-out (hom)$ Reference profile (S) $Pr(D_2) = No Prob. Drop-out (hom)$ Pr(C) = Prob. Drop-ina Crime stain profile (E) Pr(C) = No Prob. Drop-in

Prosecutor's Explanation

No Drop-out of the "A" allele The "B" allele dropped out No other Drop-in

$Pr(\overline{D}) Pr(D) Pr(\overline{C})$

The LR

$Pr(\overline{D}) Pr(D) Pr(\overline{C})$

LR =

Defense Explanation 4 possibilities

(1) The real culprit is a homozygote

 $p_a^2 Pr(D_2) Pr(\overline{C})$

Defense Explanation b a Reference profile (S)

a

4 possibilities

(2) Drop out of a heterozygote (not B) No drop-in of "A"

2p_ap_oPr(D)Pr(D)Pr(C)

Defense Explanation 4 possibilities

(3) Drop out of a homozygote (not B)Drop in of "A"

 $p_0^2 Pr(D_2) Pr(C)p_a$

Defense Explanation 4 possibilities

b

Reference profile (S)

a

a

(4) Drop out of a homozygote (not AB) Drop in of "A"

 $2p_Q p_{Q'} Pr(D)^2 Pr(C)p_a$

The LR

$Pr(\overline{D}) Pr(D) Pr(\overline{C})$

LR =

 $p_a^2 Pr(D_2) Pr(C) + 2p_a p_Q Pr(D) Pr(D) Pr(C) + p_Q^2 Pr(D_2) Pr(C) p_a + 2p_O p_{O'} Pr(D)^2 Pr(C) p_a$

Haned *et al.*

Forensic Science International: Genetics xxx (2012) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Exploratory data analysis for the interpretation of low template DNA mixtures

H. Haned a,*, K. Slooten a,b, P. Gill c,d

* Netherlands Forensic Institute, Department of Human Biological traces, The Hague, The Netherlands

^bVU University Amsterdam, Amsterdam, The Netherlands

^c Norwegian institute of Public Health, Oslo, Norway

^d University of Oslo, Norway

Mitchell et al.

Forensic Science International: Genetics xxx (2012) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in

Adele A. Mitchell^{*}, Jeannie Tamariz, Kathleen O'Connell, Nubia Ducasse, Zoran Budimlija, Mechthild Prinz, Theresa Caragine

Department of Forensic Biology, Office of Chief Medical Examiner of The City of New York, 421 E 26th Street, New York, NY 10016, United States

Probabilistic Modeling of TA

Mathematical Modeling of the Data

PHR, Mix Ratio, Stutter etc...

50-100,000
Simulations

Probable *Genotypes* to explain the mixture

Genotypes	Probability
9,11	76%
11,11	15%
11,13	2%
8,11	2%
11,12	2%
9,9	1%
9,12	<1%
10,11	<1%
8,12	<1%
8,9	<1%

Uncertainty with D16S539

The 11 allele is at 169 RFU (above 150 ST)

The "12" peak in the stutter position is only slightly below our stutter threshold of 10.4%

If we assume 8 and 12 are stutter peaks, then the possible genotypes of the minor contributor are - **9,11 11,11 11,13**

Should we also include the 8 and 12 alleles in Creating our genotype combinations?

Summary – Mixture Weight

Determining the LR for D16S539 (H_P)

	Probability	Genotype Freq	
Genotypes	(Before Conditioning)	(HWE)	(Prob) x (HWE)
9,11	0.431	0.0719	0.031
11,11 0.098		0.1025	0.01
11,13	11,13 0.014 0.093		0.0013
8,11	0.092	0.0106	0.001
11,12	0.008	0.2093	0.0016
9,9	0.013	0.0126	0.0002
9,12	0.003	0.0734	0.0002
10,11	0.003	0.036	0.0001
8,12	0.014	0.0108	0.0002
8,9	0.015	0.0037	0.0001
		(sum)	0.046

Suspect = 8,11

Determining the LR for D16S539 (H_D)

	Probability	Genotype Freq		
Genotypes	(Before Conditioning)	(HWE)	(Prob) x (HWE)	
9,11	0.431	0.0719	0.031	
11,11	0.098	0.1025	0.01	
11,13	0.014	0.093	0.0013	LR =
8,11	0.092	0.0106	0.001	
11,12	0.008	0.2093	0.0016	
9,9	0.013	0.0126	0.0002	
9,12	0.003	0.0734	0.0002	
10,11	0.003	0.036	0.0001	
8,12	0.014	0.0108	0.0002	
8,9	0.015	0.0037	0.0001	
		(sum)	0.046	

0.046

0.092

= 2.0

Suspect = 8,11

D16S539 Results

LR Assume Stutter @8,12 3.6 (fails to capture 8,11) Include 8,12 2.3 True Allele 2.0

D16S539 Results

Complex Mixture

Mark Sample for Deleti TPOX D19S433 υWA D18S51 2000 -16 18 20 353 336 451 12 14 392 1139 1384 2856 3408 1567 1672 1694 2932

Mark Sample for Deleti

True Allele Results – 3 person mixture

True Allele Results – 4 person mixture

Potential Suspects

- A, B, C and D are the four individuals in the mixture.
- John Butler is also a suspect (The Butler did it).
- "Omni man" is also a possible suspect.

"The Butler"

Suspect A

Suspect B

Omni Man

Strategies

- Conditioning will help...
- This may not be possible.
- Multiple replicates will be necessary.
- There is a need to determine an appropriate method for an inclusion log(LR).

Summary of the Issues

- New kits, new instruments can only increase the difficulties of interpreting low-level, challenging samples.
- Probabilistic methods will be necessary to interpret low level samples with drop-out potential (or contaminating alleles) since classical approaches to interpretation such as RMNE or mRMP (even the classic LR) will not suffice.

Thanks to NIJ for Support of BU and NIST

- NIJ Forensic Science Training Development and Delivery Program Grant # 2008-DN-BX-K158, awarded to Biomedical Forensic Science Program at Boston University School of Medicine
- NIJ has an Interagency Agreement (IAA) with the NIST Office of Law Enforcement Standards (OLES)