2012 Mixture Interpretation Workshop:

Mixtures Using SOUND Statistics, Interpretation, & Conclusions

Complexity Thresholds and Exclusion Criteria

Catherine M. Grgicak

October 15, 2012

Nashville, TN

Do your reports contain a 'concluding statement' (i.e. included, excluded)

- 1. Yes
- 2. No
- 3. Don't write reports

not-excluded? 16,<u>17</u> 29,32.2 8,<u>13</u> 11,12 D8S1179 CSF1P0 155 148 111 32.2 296 150 135 349 287 226 189 347 k Sample for Deletion 11,13 15,16 17,19 6,9 11,11 286 354 146 202 239 16B 139 118 445 414 181 9.3 116 149 310 76 Mark Sample for Deletion <u>13,15</u> 15,17 8,13 13,17 POX 400-116 115 200 171 314 317 518 486 195 113 Mark Sample for Deletion 23,25 11,13 AMEL D5S818 ECO 400 | 300 + 100[‡] X Y 365 118 211 426 232 25 26 95 109

Is this suspect (yellow boxes)

AT	30RFU	
ST	150RFU	
PHR	0.2 (<500RFU)	0.5 (>500RFU)
Major:Minor	4:1	

Can the mixture shown in the previous slide be used for exclusion purposes?

Is the suspect (yellow boxes) included or excluded as a potential contributor to the mixture presented above?

- 1. Included
- 2. Excluded
- 3. Inconclusive
- 4. The mixture was uninterpretable

Is this suspect (yellow boxes) <u>not-excluded</u>?

AT	30RFU	
ST	150RFU	
PHR	0.2 (<500RFU)	0.5 (>500RFU)
Major:Minor	4:1	

Can the mixture shown in the previous slide be used for exclusion purposes?

Is the suspect (yellow boxes) included or excluded as a potential contributor to the mixture presented above?

- 1. Included
- 2. Excluded
- 3. Inconclusive
- 4. The mixture was uninterpretable

Statement of the Problem

DNA Commission of the International Society of Forensic Genetics: *Recommendations on the Interpretation of Mixtures*

Interpretation Steps	Action	
Step 1	Identify the presence of a mixture Possible to consider "complexity	
Step 2	Designation o <i>threshold</i> " before proceeding?	
Step "2.5" Step 3	Identify the number of contributors in the mixture	
Step 4	Estimation of the mixture proportion or ratio of the individuals contributing to the mixture	
Step 5	Consideration of all possible genotype combinations	
Step 6	Compare reference samples	

P. Gill, C.H. Brenner, J.S. Buckleton, A. Carracedo, M. Krawczak, W.R. Mayr, et al., DNA commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures, Forensic Sci. Int. 160 (2006) 90-101.

Is this suspect (yellow boxes) ST 150RFU 0.2 (<500RFU) 0.5 (>500RFU) not-excluded? PHR Major:Minor 4:1 16,17 29,32.2 <u>8,13</u> 11,12 32.2 30 11 37 16 56 11 43 19 discrepancies. Is this enough to exclude this suspect? Or is the mixture missing too much information? Mark Sample for Deletio Should we exclude suspect? Or is the comparison inconclusive due to the low-level and complexity? 11,13 <u>23,25</u>

AT

30RFU

Correct Inclusions vs Exclusions

- Created 10,000 mixtures,
 - 10,000 individuals who ought to have been excluded
 - 10,000 individuals who ought to have been included
 - Perturbing the mixtures with increasing levels of drop-out
 - Determined the proportion of false inclusions and false exclusions with varying levels of "allowed allelic discrepancies" (τ).

Proportion of Correct Inclusions

- When Pr(D) = 0, get correct inclusion 100% of the time.
- With increasing levels of DO,
 correct inclusion rates
 <u>decrease</u> (i.e. you are more
 likely to exclude a standard
 who ought to have been
 included as a potential
 contributor.

30

30

- To alleviate this incorrect exclusion rate, allow for some allelic discrepancy (i.e. allow for some allelic drop-out to explain the inconsistency between standard and mixture).

Proportion of Correct Exclusions

Pr(D) = 0.30

- When Pr(D) = 0, get correct exclusion 100% of the time with < 6 discrepancies
- With increasing levels of DO, correct exclusion rates <u>increase</u> (i.e. you are more likely to exclude a standard who ought to have been excluded as a potential contributor)

		Non-Contributor Individual		
		Locus 1	Locus 2	Locus 3
Alleles of Non-Contributor Standard		7, 11	8, 9	13, 15
_	Detected Mixture Alleles	7, 8, 9, 11	5, 8, 9, 14	11, 13, 14
5.	Discrepant Allele(s)			15
Allowed Discrepancy τ_0 Allowed Discrepancy τ_1		Excluded since $\delta = 1 > \tau_0$		
		Included since $\delta = 1 \leq \tau_1$		
L	Allowed Discrepancy τ_2	Included since $\delta=1 \leq \tau_2$		
Detected Mixture Alleles Discrepant Allele(s)	Detected Mixture Alleles	7, 8, 9	8, 9, 14	11, 13, 14
	Discrepant Allele(s)	11		15
) = (Allowed Discrepancy τ_0	Excluded since $\delta = 2 > \tau_0$		
	Allowed Discrepancy τ_1	Excluded since $\delta = 2 > \tau_1$		
Allowed Discrepancy τ_2		Included since $\delta = 2 \le \tau_2$		
Detected Mixture Allo Discrepant Allele(s Allowed Discrepancy	Detected Mixture Alleles	8	9, 14	11, 14
	Discrepant Allele(s)	7, 11	8	13, 15
	Allowed Discrepancy τ_0	Excluded since $\delta = 5 > \tau_0$		
	Allowed Discrepancy τ_1	Excluded since $\delta = 5 > \tau_1$		
-	Allowed Discrepancy τ_2	Excluded since $\delta = 5 > \tau_2$		

Incorrect Inclusion v Correct Inclusion – R.O.C. Analysis

R.O.C, Receiver
 Operating
 Characteristic graphs
 method for visualizing
 and selecting
 parameters based on
 performance rates.

- Two-dimensional charts which plot the true positive versus the false positive rates for a given parameter or classifier.
- If the method is behaving perfectly then the false positive rate is 0 and the true positive rate is 1.

What percentage of the time would you be willing to falsely exclude a standard who in truth should be included?

1. 0%

- 2. 1%
- 3. 5%
- 4. 10%
- 5. 50%

6. 99%

What percentage of the time would you be willing to falsely include a standard who in truth should be excluded?

- 1. 0%
- 2. 1%
- 3. 5%
- 4. 10%
- 5. 50%
- 6. 99%

Incorrect Inclusion v. Correct Inclusion – R.O.C. Analysis

Complexity Threshold, Exclusion Criteria

If the complexity criteria was set such that the lab does not want a correct inclusion rate < 85% and an incorrect inclusion rate > 1%, then mixtures with suspected Pr(D) > 0.3 should not be interpreted.

Complexity Criteria: Correct Inclusion must be > x%	Complexity Criteria: Incorrect Inclusion must be < y%	Then suspected Pr(D) must be < z
85%	1%	0.3
95%	0.1%	0.1
100%	0%	0

Pr(D) = 0 when $\overline{H} > 200$ RFU or > 0.2 ng

If the Complexity Criteria is	And suspected Pr(D) =	Then Exclusion Criteria (allelic discrepancies)	Overall Exclusion Criteria
> 85% correct inclusion and < 1% incorrect inclusion	0.3	10	
	0.2	9	7
	0.1	8	
	0	7	

Is this suspect (yellow boxes) <u>not-excluded</u>?

AT	30RFU	
ST	150RFU	
Complexity Threshold	<u>95% and 0.1%</u>	
PHR	0.2 (<500RFU)	0.5 (>500RFU)
Major:Minor	4:1	

Conclusion, this sample cannot be used for comparison purposes at a complexity threshold of 95% and 0.1%

A more lax complexity criterion such as 85% and 1%, would result in <u>non-exclusion</u> (τ=8) of the standard as a potential contributor. (Non-exclusion = included OR inconclusive)

Is this suspect (yellow boxes) <u>not-excluded</u>?

AT	30RFU	
ST	150RFU	
Complexity Threshold	<u>95% and 0.1%</u>	
PHR	0.2 (<500RFU)	0.5 (>500RFU)
Major:Minor	4:1	

Conclusions

- Inherent risk of false inclusions and exclusions when using mixed, low-level samples for comparison purposes

- The level of drop-out, hence peak height, can be used to aid in determining whether the profile is suitable for comparison purposes
- This decision can be made BEFORE comparison to knowns

- R.O.C. analysis can be used as a tool to determine complexity and exclusion criteria

 <u>If there is a need to "explain" why there are > 8 allelic</u> <u>discrepancies while still not excluding the standard, then with 2-</u> <u>person mixtures, there is a > 1% chance you are including a known</u> <u>that would have been excluded had you had a sufficient quantity of</u> <u>DNA and more stringent complexity guidelines.</u>