STRs, CE, and Mixtures

Florida Statewide DNA Training

Indian Rocks Beach (Largo), FL May 12-13, 2008

Dr. John M. Butler National Institute of Standards and Technology

john.butler@nist.gov

- Review articles and workshops on STRs, CE, validation
 PowerPoint and pdf files available for download
 - http://www.cstl.nist.gov/biotech/strbase/NIJprojects.htm

Advantages for STR Markers

- Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material
- Multiplex amplification with fluorescence detection enables high power of discrimination in a single test
- · Commercially available in an easy to use kit format
- Uniform set of core STR loci provide capability for national and international sharing of criminal DNA profiles

Value of STR Kits

Advantages

- Quality control of materials is in the hands of the manufacturer (saves time for the end-user)
- Improves consistency in results across laboratories same allelic ladders used
- Common loci and PCR conditions used aids DNA databasing efforts
- Simpler for the user to obtain results

Disadvantages

- Contents may not be completely known to the user (e.g., primer sequences)
- · Higher cost to obtain results

100 125 150	PCR Product Size	(bp) 250 275 300	Sa 325 App	me DNA s blied Biosy	ample run with stems STR Kits
D3S1358	VWA FGA		Blue	Rando	m <u>Match Probability</u> 1.0 x 10 ⁻³
Amel	TH01 TPOX	CSF1PO	Gree	nl	7.8 x 10 ⁻⁴
D3S1358 Amel D5S8	TH01 D13S317 18 VWA TPOX FG/	CSF1PO D7S820	Profi	ler™	9.0 x 10 ⁻¹¹
Amel D8S1179 D3S1358 D5	VWA D13S31 S818 D21S11 FG/	D7S820	Prof	iler Plus™	2.4 x 10 ⁻¹¹
D3S1358 Amel	TH01 TPOX	D7S820 CSF1PO	COfi	er™	2.0 x 10 ^{.7}
D3S1358 Amel D8S1179 D19S433	TH01 D21S11 FGA	D16S539 D18S51 D2S	I338 SGN	I Plus™	4.5 x 10 ⁻¹³

For more information, see J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, pp. 133-138

Loous	STR Kite/Accove	Reculto	Reference
New Section of STRBase (launched to track MiniFiler discordance and allele dropout frequency): http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm			
D13S317	Identifiler vs miniplexes	Shift of alleles 10 and 11 due to deletion outside of miniplex assay	Butler et al. (2003), Drabek et al. (2004)
D16S539	PP1.1 vs PP16 vs COfiler	Loss of alleles with PP1.1 ; fine with PP16 and COfiler	Nelson et al. (2002)
D8S1179	PP16 vs ProPlus	Loss of alleles 15, 16, 17, and 18 with ProPlus; fine with PP16	Budowle et al. (2001)
FGA	PP16 vs ProPlus	Loss of allele 22 with ProPlus; fine with PP16	Budowle and Sprecher (2001)
D18S51	SGM vs SGM Plus	Loss of alleles 17, 18, 19, and 20 with SGM Plus; fine with SGM	Clayton et al. (2004)
CSF1PO	PP16 vs COfiler	Loss of allele 14 with COfiler; fine with PP16	Budowle et al. (2001)
TH01	PP16 vs COfiler	Loss of allele 9 with COfiler; fine with PP16	Budowle et al. (2001)
D21S11	PP16 vs ProPlus	Loss of allele 32.2 with PP16; fine with ProPlus	Budowle et al. (2001)

	STR Me	asured Mutatio	n Rates http:	//www.cstl.nist.go	v/biotech/strbase/n	nutation.htm
5	STR Locus	Maternal Meioses (%)	Paternal Meioses (%)	Either Parent	Total Mutations	Rate
	CSF1PO	70/179,353 (0.04)	727/504,342 (0.14)	303	1,100/683,695	0.16%
	FGA	134/238,378 (0.06)	1,481/473,924 (0.31)	495	2,110/712,302	0.30%
. <u>o</u>	TH01	23/189,478 (0.01)	29/346,518 (0.008)	23	75/535,996	0.01%
2	TPOX	16/299,186 (0.005)	43/328,067 (0.01)	24	83/627,253	0.01%
l B	VWA	133/400,560 (0.03)	907/646,851 (0.14)	628	1,668/1,047,411	0.16%
O CO	D3S1358	37/244,484 (0.02)	429/336,208 (0.13)	266	732/580,692	0.13%
l ∺	D5S818	84/316,102 (0.03)	537/468,366 (0.11)	303	924/784,468	0.12%
ō	D7S820	43/334,886 (0.01)	550/461,457 (0.12)	218	811/796,343	0.10%
0	D8S1179	54/237,235 (0.02)	396/264,350 (0.15)	225	675/501,585	0.13%
÷	D13S317	142/348,395 (0.04)	608/435,530 (0.14)	402	1,152/783,925	0.15%
	D16S539	77/300,742 (0.03)	350/317,146 (0.11)	256	683/617,888	0.11%
	D18S51	83/130,206 (0.06)	623/278,098 (0.22)	330	1,036/408,304	0.25%
	D21S11	284/258,795 (0.11)	454/306,198 (0.15)	423	1,161/564,993	0.21%
	Penta D	12/18,701 (0.06)	10/15,088 (0.07)	21	43/33,789	0.13%
	Penta E	22/39,121 (0.06)	58/44,152 (0.13)	55	135/83,273	0.16%
	D2S1338	2/25,271 (0.008)	61/81,960 (0.07)	31	94/107,231	0.09%
	D19S433	22/28,027 (0.08)	16/38,983 (0.04)	37	75/67,010	0.11%
	F13A01	1/10,474 (0.01)	37/65,347 (0.06)	3	41/75,821	0.05%
	FES/FPS	3/18,918 (0.02)	79/149,028 (0.05)	None reported	82/167,946	0.05%
	F13B	2/13,157 (0.02)	8/27,183 (0.03)	1	11/40,340	0.03%
	LPL 522 (ACTRD2)	0/8,821 (<0.01)	9/16,943 (0.05)	4 None reported	13/25,764	0.05%
5	233 (ACTBP2) *D	ata used with permission fro	om American Association o	f Blood Banks (AAB	B) 2002 Annual Repo	0.04%

Summary of STR Mutations

Mutations impact paternity testing and missing persons investigations but not forensic direct evidence-suspect matches...

- · Mutations happen and need to be considered
- Usually 1 in ~1000 meioses
- Paternal normally higher than maternal
- VWA, FGA, and D18S51 have highest levels
- TH01, TPOX, and D16S539 have lowest levels

Primer Synthesis and Dye Blobs

- Oligonucleotide primers are synthesized from a 3'-to-5' direction on solid-phase supports using phosphoramidite chemistry
- The fluorescent dye is attached at 5'end of the primer (it is the last component added)
- The coupling reaction at each step of primer synthesis is not 100%, which can lead to some minor level impurities
- Left-over dye molecules that are not removed by post-synthesis purification can be carried through the PCR amplification step and injected onto the capillary to produce "dye blobs" or "dye artifacts" in CE electropherograms (wider than true allele peaks)

May 12-13, 2008

General Information •Intro to STRs (downloadable PowerPoint) •STR Fact Sheets Sequence Information Multiplex STR Kits •Variant Allele Reports •Training Slides

•FBI CODIS Core Loc •DAB Standards •NIST SRMs 2391 •Published PCR Prime •Y-Chromosome STR Population Data Validation Studies •miniSTRs

STRBase

Forensic Interest Data	Supplemen
•FBI CODIS Core Loci	Reference
•DAB Standards	 Technology
•NIST SRMs 2391	 Addresses
 Published PCR Primers 	 Links to Oth
•Y-Chromosome STRs	 DNA Quant

•mtDNA •New STRs

New information is added regularly...

Technology: Research Programs miniSTRs Y-chromosome STRs

- mtDNA
- SNPs
- qPCR for DNA quantitation
- DNA stability studies
- · Variant allele characterization and sequencing
- · Software tools
- · Expert System review
- · Assay development with collaborators

J.M. Butler - Florida Statewide DNA Training

Summary of miniSTRs

- Reduced size amplicons improve success rates with degraded DNA or samples possessing PCR-inhibitors – European leaders view miniSTRs as "the way forward"
- MiniFiler concordance testing performed
- New miniSTR loci are being characterized at NIST – 26 loci developed

Thank you for your attention... Funding from the National Institute of Justice (NIJ) through NIST Office of Law Enforcement Standards Hill Kline Coble miniSTRs and Early Original NC miniSTR work STR allele seauencina 26plex work miniSTR work http://www.cstl.nist.gov/biotech/strbase Collaborators from ABI john.butler@nist.gov Lori Hennessy Julio Mulero 301-975-4049 Rob Lagace Chien-Wei Chang

http://www.cstl.nist.gov/biotech/strbase/training.htm

Ohm's Law

- V = IR (where V is voltage, I is current, and R is resistance)
- · Current, or the flow of ions, is what matters most in electrophoresis
- · CE currents are much lower than gels because of a higher resistance in the narrow capillary
- CE can run a higher voltage because the capillary offers a higher surface area-to-volume ratio and can thus dissipate heat better from the ion flow (current)

- Electrophoresis buffer -
 - Urea for denaturing and viscosity
 - Buffer for consistent pH Pyrolidinone for denaturing DNA

 - EDTA for stability and chelating metals
- Polymer solution -- POP-4 (but others work also)
- Capillary wall coating -- dynamic coating with polymer Wall charges are masked by methyl acrylamide
- Run temperature -- 60 °C helps reduce secondary structure on DNA and improves precision. (Temperature control affects DNA sizing)

J.M. Butler - Florida Statewide DNA Training

Sample Conductivity Impacts Amount Injected			
$[DNA_{inj}] = \frac{Et(\pi r^2) (\mu_{ep} + \mu_{ep})}{(\mu_{ep} + \mu_{ep})}$	$\frac{1}{\lambda_{sample}} (\lambda_{buffer})$		
[DNA _{in]}] is the amount of sample injected E is the electric field applied	[DNA _{sample}] is the concentration of DNA in the sample		
t is the injection time	$\boldsymbol{\lambda}_{\text{buffer}}$ is the buffer conductivity		
r is the radius of the capillary	λ_{sample} is the sample conductivity		
μ_{ep} is the mobility of the sample molecules			
μ _{eof} is the electroosmotic mobility auter <i>et al.</i> (2004) Electrophoresis 25: 1397-1412	CI- ions and other buffer ions present in PCR reaction contribute to the sample conductivity and thus will compete with DNA for injection onto the capillary		

Comments on Sample Preparation

- Use high quality formamide (<100 μS/cm)! - ABI sells Hi-Di formamide
 - regular formamide can be made more pure with ion exchange resin
- Deionized water vs. formamide
 - Biega and Duceman (1999) J. Forensic Sci. 44: 1029-1031
 - Crivellente, Journal of Capillary Electrophoresis 2002, 7 (3-4), 73-80.
 - water works fine but samples are not stable as long as with formamide; water also evaporates over time...
- Denaturation with heating and snap cooling - use a thermal cycler for heating and cold aluminum block for snap cooling
 - heat/cool denaturation step is necessary only if water is substituted for formamide...

January 6, 2005 Letter from Applied Biosystems to ABI 310 Customers

- "Testing has shown that Hi-Di Formamide denatures DNA without the need to heat samples ... "
- · In other words, no heat denaturation and snap cooling needed!

Fluorescent Labeling of PCR Products

- Dyes are attached to one primer in a pair used to amplify a STR marker
- Dyes are coupled to oligonucleotides (primers) through NHS-esters and amine linkages on the 5'end of the primer: Dye-(CH₂)₆-primer
- Dye-labeled oligonucleotides are incorporated during multiplex PCR amplification giving a specific color "tag" to each PCR product
- PCR products are distinguished using CCD imaging on the 310

Practical Aspects of ABI 310/3100 Use

Maintenance of ABI 310/3100/3130

- Syringe leaks cause capillary to not fill properly
- Capillary storage & wash it dries, it dies!
- Pump block cleaning helps insure good fill
- Change the running buffer regularly

YOU MUST BE CLEAN AROUND A CE!

Overall Thoughts on the ABI 310/3100/3130

- Settling on a common instrument platform has been good for the forensic DNA community in terms of data consistency (this is also true with the use of common STR kits)
- I am concerned that the community is very dependent primarily on one company...
- I really like using the instrument and can usually get nice data from it
- Like any instrument, it has its quirks...

J.M. Butler - Florida Statewide DNA Training

3. External Factors

- Room temperature
 - Variations in room temperature can cause mobility shifts with band shifts and loss of calibration
 - Temperature is also important due to effects of high humidity on electrical conductance
- Cleanliness
 - Urea left in sample block can crystallize and catalyze further crystal formation causing spikes, clogs and other problems.
 - Best bet is to keep polymer in system and not remove or change block until polymer is used up.

Cleanliness

- Urea sublimates and breaks down to ionic components these find a path to ground
- · Similarly wet buffer under a vial creates paths to ground
- Capillary windows must be clear or matrix effects will occur
- · Laser will often assist in this process
- Vial caps will transfer low levels of DNA to capillary

4. Instrumental Factors Optical System Sensitivity changes with age, capillary diameter, capillary

cleanliness, instrument calibration

- Fluidic System
 - Effects of bubbles, dust, urea crystals, leaks in syringe and capillary ferrule
- Matrix Calculations
 - Changes in buffer, optics, sample dye can alter the software calibrations
- Capillary Problems
 - Chemisorbed materials on capillary surface can produce osmotic flow, DNA band broadening and inconsistent resolution (meltdowns)

Beware of Urea Crystals

Pump block should be well cleaned to avoid problems with urea crystal formation

Urea crystals have formed due to a small leak where the capillary comes into the pump block

Urea sublimates and can evaporate to appear elsewhere

Use a small balloon to better grip the ferrule and keep it tight

Buffer Issues

- The buffer and polymer affect the background fluorescence- affecting the matrix
- · Urea crystals and dust may produce spikes
- High salt concentrations may produce reannealing of DNA
- · High salt concentrations affect current
- Low polymer concentrations affect peak resolution

Meltdowns may be the result of

- Bad formamide
- Excess salt in sample/renaturation
- · Water in the polymer buffer
- Syringe leak or bottom out
- · Poisoned capillary
- Conductive polymer buffer due to urea degradation
- Crack/shift in capillary window
- Detergents and metal ions

5. Troubleshooting benchmarks

• Monitor run current

- Observe syringe position and movement during a batch
- Examine ILS (ROX) peak height with no sample
- Observe "250 bp" peak in GS500 size standard
- Monitor resolution of TH01 9.3/10 in allelic ladder and size standard peak shapes
- Keep an eye on the baseline signal/noise
- Measure formamide conductivity
- Reagent blank are any dye blobs present?
- See if positive control DNA is producing typical peak heights (along with the correct genotype)

Measurement of Current

- V/I = R where R is a function of capillary diameter, [buffer], and buffer viscosity
- In a CE system the voltage is fixed, thus changes in resistance in the capillary will be reflected in the current observed
- Air bubbles, syringe leaks, alternate paths to ground, changes in temperature, changes in zeta potential, and contamination, will be reflected in the current
- A typical current for a CE system with POP4 buffer is 8-12 µA (microamps)

Syringe Travel

- The ABI 310 instrument also keeps track of the position of the syringe (in the log file)
- Depending on the resistance to flow, the syringe will travel different lengths
- Syringe leaks may be reflected in a longer distance traveled prior to each injection
- These leaks occur around the barrel of the syringe and at the connection to the capillary block

J.M. Butler - Florida Statewide DNA Training

- . Watching the laser current
- 4. Watching and listening for voltage spikes
- 5. Monitoring room temperature and humidity

Mixture Interpretation Questions

Homework for Monday Night

Name (leave blank if you want to be anonymous): _____ Email address: _____

Interpretation Guidelines

What would you like to see in national guidelines on how to perform DNA mixture interpretation and statistical analysis?

How does your lab handle reference samples during interpretation of evidence? Do you try to solve the mixture entirely without looking at either victim or suspect profiles?

What kind of pre-case assessment do you perform when approaching a case where a possible mixture is involved?

Does your lab attempt statistics on a minor component? If so, what types of statistics are used?

Do you have a decision point whereby you consider a mixture too complicated and do not try to solve it? How do you know when to stop in terms of mixture interpretation?

Are composite profiles acceptable – e.g., high injection for minor component and low injection for major component allele identification?

How do you report mixture statistics in court?

Would a flowchart for mixture interpretation be helpful?

Validation and Training

For your lab validation studies of a new STR kit or instrument, how many mixtures should be evaluated? How do you decide on what combination of alleles to include in such a study?

What kind of training materials would be beneficial to help your laboratory more effectively solve mixtures?

Suggestions for training staff to have more analyst consistency within your lab:

Other Topics

What percentage of time is spent in a case trying to deduce the mixture components?

Have you seen performance differences between various STR typing kits that would impact mixture interpretation?

Is your lab using Y-STRs to help with mixtures?

What kinds of software features would be valuable to aid mixture interpretation?

What are the biggest obstacles you face in your lab in terms of mixture interpretation?
Mixture Interpretation Discussion

Florida Statewide Training Meeting

Indian Rocks Beach, FL May 12-13, 2008

AAFS 2008 Workshop Presenters

John M. Butler

NIST

Ann Marie Gross MN BCA George Carmody Carleton University/ Statistical Consultant

Gary Shutler Angie Dolph Wash State Police Crime Lab (NIST Summer Intern)

Joanne B. Sgueglia T Mass State Police Crime Lab

Tim Kalafut US Army Crime Lab

Purpose for Teaching AAFS Workshop

We hope that participants:

- Gain a better understanding of the current approaches being used throughout the community for mixture interpretation
- See worked examples of mixture component deconvolution and statistical analysis
- Come away with ideas to improve your laboratory's interpretation guidelines and training regarding mixtures in forensic casework

AAFS Workshop Morning Agenda - Theory Background and Introductory Information

8:30 a.m. – 9:00 a.m. – John Butler

Survey Results on Numbers and Types of Casework Mixtures 9:00 a.m. – 9:15 a.m. – Ann Gross

Principles in Mixture Interpretation 9:15 a.m. – 10:15 a.m. – John Butler

10:15 a.m. – 10:30 a.m. BREAK

Strategies for Mixture Deconvolution with Worked Examples 10:30 a.m. – 11:30 a.m. – John Butler

Different Approaches to Statistical Analysis of Mixtures 11:30 a.m. – 12:00 p.m. – George Carmody

12:00 p.m. – 1:15 p.m. LUNCH

Afternoon Agenda – Practical Application

Real Case Example – Importance of Properly Stating Your Conclusions 1:15 p.m. – 1:30 p.m. – Gary Shutler

Variability between Labs in Approaches & Mixture Interlaboratory Studies 1:30 p.m. – 2:15 p.m. – John Butler

Validation Studies and Preparing Mixture Interpretation Guidelines 2:15 p.m. – 2:45 p.m. – Joanne Sgueglia

2:45 p.m. – 3:00 p.m. BREAK

Testing of Mixture Software Programs 3:00 p.m. – 3:15 p.m. – Angela Dolph

DNA_DataAnalysis Software Demonstration 3:15 p.m. – 4:00 p.m. – Tim Kalafut

Training Your Staff to Consistently Interpret Mixtures 4:00 p.m. - 4:45 p.m. - Panel Discussion with Ann Gross, Gary Shutler, Joanne Sgueglia

4:45 p.m. - 5:00 p.m. - Questions and Answers as needed

Mixture Basics From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 154 Mixtures arise when two or more individuals contribute to the sample being tested. Mixtures can be challenging to detect and interpret without extensive experience and careful training. Even more challenging with poor quality data when degraded DNA is present...

 Differential extraction can help distinguish male and female components of many sexual assault mixtures.
 Y-chromosome markers can help here in some cases...

- Varying opinions between interpreting analysts due to lack of uniform guidelines
- · Resistance to change from other analysts/supervisors
- Getting management to commit to guidelines that will be followed by everyone

Responses to Questions from a Previous Mixture Workshop (Fall 2007)

What are the biggest obstacles you face in your lab in terms of mixture interpretation?

- · Where to draw the line without throwing away valuable data
- · Partial minor contributors
- Stochastic effects in minor components
- STATS and presenting them in court so that the jury will understand
 them
- · When to do stats and what stats to do in different cases
- · Lack of concrete/uniform guidelines from statisticians

- · How often are mixtures obtained
- · What types of mixtures are we seeing
 - Where should we focus our attention for training
 What info can we give to the forensic community regarding mixtures
- · What types of samples most often yield mixtures

Torres et al. 4 year Spanish study

- Four year study (1/1997 to 12/2000)
- · 2412 samples typed
 - 955 samples from sexual assaults
 - 1408 samples from other offenses
 - 49 samples from human remains identifications
- 163/2412 samples (6.7% showed mixed profile)

Principles of Mixture Interpretation

Topics for Discussion

- SWGDAM Mixture Interpretation Committee progress
- Different statistical approaches: CPE or LR
- ISFG Mixture Interpretation Recommendations
 UK response
 - German categories for mixtures
- Validation as it relates to mixture interpretation
 Stochastic threshold vs analytical threshold
- · Low-level DNA and mixtures
- · Important elements of interpretation guidelines

Who is the ISFG and why do their recommendations matter?

International Society of Forensic Genetics http://www.isfg.org/

- · An international organization responsible for the promotion of scientific knowledge in the field of genetic markers analyzed with forensic purposes.
- · Founded in 1968 and represents more than 1100 members from over 60 countries.
- A DNA Commission regularly offers recommendations on forensic genetic analysis.

DNA Commission of the ISFG

- DNA polymorphisms (1989)
- PCR based polymorphisms (1992)
- Naming variant alleles (1994)
- Repeat nomenclature (1997)
- Mitochondrial DNA (2000)
- Y-STR use in forensic analysis (2001)
- Additional Y-STRs nomenclature (2006)
- Mixture Interpretation (2006) •
- Disaster Victim Identification (2007)

http://www.isfg.org/Publications/DNA+Commission

ISFG Executive Committee

Working Party

Representative Mecki Prinz (New York City, USA)

Peter Schneid

(Köln, Germany)

Secretary Wolfgang M

(Vienna, Austria) (Porto, Portugal)

Treasurer

viels Morling

(Copenhagen Denmark)

Angel Carracedo FSI Genetics Editor-in-Chief (former ISFG President, VP) (Santiago de Compostela, Spain)

http://www.dfs.virginia.gov/about/minutes/saCommittee/20080108.pdf

From Report to the Virginia Scientific Advisory Committee by the DNA Subcommittee – Addendum January 8, 2008 (authored by Dr. Norah Rudin and Dr. Artie Eisenberg) "It is for these types of challenging samples, where the evidence profile may not exactly "match" a reference profile, that confirmation bias becomes a concern. The interpretation of an evidentiary DNA profile should not be influenced by information about a subject's DNA profile. Each item of evidence or reference samples. Yet forensic analysts are commonly aware of submitted reference profiles when interpreting DNA test results, creating the opportunity for confirmatory bias, despite the best intentions of the

http://www.dfs.virginia.gov/about/minutes/saCommittee/20080108.pdf

analyst...

Biostatistical approaches

- Calculation of the probability of exclusion for a randomly selected stain donor* [P(E)] (*RMNE - "random man not excluded")
- Calculation of the likelihood ratio [LR] based on defined hypotheses for the origin of the mixed stain

Slide from Peter Schneider (presented at EDNAP meeting in Krakow in April 2007)

Which approach should be used?

- If major/minor contributors cannot be identified based on unambiguous DNA profiles, or if the the number of contributors cannot be determined, then the calculation of the probability of exclusion is appropriate.
- The calculation of P(E) is always possible for type A and type B mixtures.

Not acceptable ...

- ... is the inclusion of a genotype frequency of a non-excluded suspect into the report, if the given mixed stain does not allow a meaningful biostatistical interpretation.
 - this would lead to the wrongful impression that this genotype frequency has any evidentiary value regarding the role of the suspect as a contributor to the mixed stain in question.

Slide from Peter Schneider (presented at EDNAP meeting in Krakow in April 2007)

Conclusions

Slide from Peter Schneider (presented at EDNAP meeting in Krakow in April 2007)

- The likelihood ratio has a significant weight of evidence, as it relates directly to the role of the suspect in the context of the origin of the stain.
- The exclusion probability makes a general statement without relevance to the role of the suspect.
- However, this does not imply that P(E) is always more "conservative" in the sense that the weight of evidence is not as strong compared to the LR.

Slide from Peter Schneider (presented at EDNAP meeting in Krakow in April 2007

GEDNAP 32

Mixture interpretation exercise:

- 3 person mixture without major contributor
- Person A from group of reference samples was not excluded
- Allele frequencies for eight German database systems provided for exercise
- German-speaking GEDNAP participants invited to participate based on published recommendations

Slide from Peter Schneider (presented at EDNAP meeting in Krakow in April 2007)

lide from Peter Schneider (presented at EDNAP meeting in Krakow in April 2007)

- **Type B** enables major contributor to be deduced - RMP (which is 1/LR)
- **Type C** no stats should be attempted because of the possibility of failure to account for allele dropout due to stochastic effects with low level DNA samples

- Provides ability to express and evaluate both the prosecution hypothesis, $H_{\rm p}$ (the suspect is the perpetrator) and the defense hypothesis, $H_{\rm d}$ (an unknown individual with a matching profile is the perpetrator)

$$LR = \frac{H_p}{H_d}$$

- The numerator, H_p, is usually 1 since in theory the prosecution would only prosecute the suspect if they are 100% certain he/she is the perpetrator
- The denominator, \mathbf{H}_{d} is typically the profile frequency in a particular population (based on individual allele frequencies and assuming HWE) i.e., the random match probability

LR is not a probability but a ratio of probabilities

DAB Recommendations on Statistics

February 23, 2000 Forensic Sci. Comm. 2(3); available on-line at http://www.fbi.gov/hq/lab/fsc/backissu/july2000/dnastat.htm

"The DAB finds either one or both PE or LR calculations acceptable and strongly recommends that one or both calculations be carried out whenever feasible and a mixture is indicated"

- Probability of exclusion (PE)
 Devlin, B. (1993) Forensic inference from genetic markers.
 Objective Market in Market Parameters 2, 244–202
- Statistical Methods in Medical Research, 2, 241–262. – Likelihood ratios (LR)
 - Evett, I. W. and Weir, B. S. (1998) Interpreting DNA Evidence. Sinauer, Sunderland, Massachusetts.

ISFG DNA Commission on Mixture Interpretation

Gill *et al.* (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. *Forensic Sci. Int.* 160: 90-101

- The likelihood ratio (LR) is the preferred statistical method for mixtures over RMNE
- 2. Scientists should be trained in and use LRs
- Methods to calculate LRs of mixtures are cited
- Follow Clayton et al. (1998) guidelines when deducing component genotypes
- Prosecution determines H_p and defense determines H_d and multiple propositions may be evaluated
- When minor alleles are the same size as stutters of major alleles, then they are indistinguishable
- Allele dropout to explain evidence can only be used with low signal data
- No statistical interpretation should be performed on alleles below threshold
- Stochastic effects limit usefulness of heterozygote balance and mixture proportion estimates with low level DNA

Gill et al. (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 160: 90-101

Thoughts by Peter Gill on Recommendation #5 (ENFSI meeting, Krakow, Poland, April 19, 2007)

- · Prosecution and defense each want to maximize their respective probabilities
- · Recommendation 5 places ownership for each hypothesis
- In order to perform the LR calculation(s), the forensic scientist decides on both the prosecution and defense hypotheses.
- Since the forensic scientists usually cannot discover the defense hypothesis before the trial (as they are typically working with the prosecution if the DNA matches...), assumptions must be clearly stated with the important caveat that you cannot perform calculations on the stand! (For example, you need three weeks warning to make and check calculations.)
- By anchoring the respective hypotheses to each side, the defense can change their hypothesis but the prosecution does not need to change theirs...
- It is worth noting that the likelihood ratio always goes up if the defense lowers their hypothesis (H_d gets lower with more possible combinations)

ISFG (2006) Recommendations

- Recommendation 6: If the crime profile is a major/minor mixture, where minor alleles are the same size (height or area) as stutters of major alleles, then stutters and minor alleles are indistinguishable. Under these circumstances alleles in stutter positions that do not support H_p should be included in the assessment.
- In general, stutter percentage is <15%

Gill et al. (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 160: 90-101

ISFG (2006) Recommendations

• Recommendation 7: If drop-out of an allele is required to explain the evidence under H_{p} : (S = ab; E = a), then the allele should be small enough (height/area) to justify this. Conversely, if a full crime stain profile is obtained where alleles are well above the background level, and the probability of drop-out approaches Pr(D) \approx 0, then H_{p} is not supported.

Gill et al. (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 160: 90-101

UK Response

Gill et al. (2008) FSI Genetics 2(1): 76-82

Recommendation 7:

- We recommend slight rewording...[with mention of companion allele]
- If a full crime-stain profile is obtained where alleles are well above the background level, and the probability of dropout Pr(D) approaches zero, then H_p is not supported (Figure 6).

Determining the Dropout (Stochastic) Threshold

Gill et al. (2008) FSI Genetics 2(1): 76-82

 The dropout threshold can be determined experimentally for a given analytical technique from a series of pre-PCR dilutions of extracts of known genotype technique (it will probably vary between analytical methods). These samples can be used to determine the point where allelic dropout of a heterozygote is observed relative to the size of the survivor companion allele. The threshold is the maximum size of the companion allele observed. This is also the point where Pr(D) approaches zero (Fig. 4).

Dropout threshold will change depending on instrument and assay conditions (e.g., longer CE injection will raise dropout threshold)

UK Response

Gill et al. (2008) FSI Genetics 2(1): 76-82

Recommendation 8:

 If there is a band below the experimental threshold where background noise might be prevalent, and it is distinct and clear from the background, then it should be recorded and available on the case file.

ISFG (2006) Recommendations

 Recommendation 9: In relation to low copy number, stochastic effects limit the usefulness of heterozygous balance and mixture proportion estimates. In addition, allelic drop-out and allelic drop-in (contamination) should be taken into consideration of any assessment.

Gill et al. (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 160: 90-101

UK Response

Gill et al. (2008) FSI Genetics 2(1): 76-82

Recommendation 9:

 Case pre-assessment is necessary in order to determine the best scientific method to process a sample. To facilitate this, it is recommended that wherever possible, this should include quantification. Quantification is used to determine the optimum method to process—if low-level DNA, a sample would benefit from procedures to enhance sensitivity of detection. There may be reasons where quantification is not practicable, especially if low levels of DNA are expected, since the result itself may be compromised if a portion of the sample is sacrificed. At low DNA levels, the accuracy of the quantification test itself may be inefficient.

UK Response

Gill et al. (2008) FSI Genetics 2(1): 76-82

Recommendation 9 (cont):

- It is possible that a given DNA profile may simultaneously comprise both 'conventional' and 'low-level' loci: for example, if degradation has occurred then low molecular weight loci may be above the dropout threshold, whereas high molecular weight loci may be below the dropout threshold.
- Similarly, if the sample is a mixture, then at a given locus there may be some alleles that are above the dropout threshold (from a major contributor) and others that are below the dropout threshold (from a minor contributor), i.e. different interpretation rationale may be simultaneously applied to different contributors within a locus.

Summary of ISFG Recommendations on Mixture Interpretation

- 1. The likelihood ratio (LR) is the preferred statistical method for mixtures over RMNE
- 2. Scientists should be trained in and use LRs
- 3. Methods to calculate LRs of mixtures are cited
- 4. Follow Clayton et al. (1998) guidelines when deducing component genotypes
- 5. Prosecution determines H_p and defense determines H_d and multiple propositions may be evaluated

- 6. When minor alleles are the same size as stutters of major alleles, then they are indistinguishable
- Allele dropout to explain evidence can only be used with low signal data
- 8. No statistical interpretation should be performed on alleles below threshold
- 9. Stochastic effects limit usefulness of heterozygote balance and mixture proportion estimates with low level DNA

Gill *et al.* (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. *Forensic Sci. Int.* 160: 90-101

Final version available at http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_MixtureWorkshop.htm

Validation Studies

- Information from validation studies should be used to set laboratory-specific
 - Stutter %
 - Peak Height Ratios
 - Minimum Peak Heights (detection thresholds)
 - Relative balance across loci
- These values are all dependent on amount of input DNA
 - If low-level DNA is amplified, stutter % may be higher and peak height ratios may be lower

Thresholds

- Validation studies should be performed in each laboratory
- · Some labs have set two thresholds:
 - Analytical thresholds what is a peak? (50 RFU)
 - Stochastic thresholds what is reliable PCR data? (150 RFU)

Step #1: Is a Mixture Present in an Evidentiary Sample?

- Examine the number of peaks present in a locus
 - More than 2 peaks at a locus (except for tri-allelic patterns at perhaps one of the loci examined)
- Examine relative peak heights
 - Heterozygote peak imbalance <60%
 - Peak at stutter position >15%
- · Consider all loci tested

Step #3: Identifying the Potential Number of Contributors

- Important for some statistical calculations
- Typically if 2, 3, or 4 alleles then 2 contributors
- If 5 or 6 alleles per locus then 3 contributors
- If >6 alleles in a single locus, then >4 contributors
- JFS Nov 2005 paper by Forensic Bioinformatics on number of possible contributors
 - Relies on maximum allele count alone
 - Does not take into account peak height information

Forensic Bioinformatics Article http://www.bioforensics.com/articles/empirical_mixtures.pdf *I Forensic Sci.* Nov. 2005, Vid. 50, No. 6 *Paper III JIS2*004.175 Available online at: www.am.org David R. Paoletti,¹ M.S.; Travis E. Doom,^{1,2} Ph.D.; Carissa M. Krane,³ Ph.D.; Michael L. Raymer,^{1,2} Ph.D.; and Dan E. Krane,^{*} Ph.D. Empirical Analysis of the STR Profiles Resulting from Conceptual Mixtures Using 959 complete 13-locus STR profiles from FBI dataset TABLE 2—Count and percent of three-person mixtures in which a particular number of unique alleles was the maximum observed across all loci, both for the original and randomized individuals⁶. 146,536,159 possible combinations Unique Alleles Count Percent (%) with 3-person mixtures 0.00% 0.00% 3.39% 63.49% 33.12% 3.39 % (4.967.034 combinations) 78 4,967,034 93,037,010 48,532,037 would only show a maximum of four alleles (i.e., appear based on maximum allele count alone to be a 2-person mixture)

Table 1 The probab for simulat	ility of observing a ed profiles at the S	i given number of a SGM ^{+TM} loci	Illeles in a two-pers	on mixtures				
Loci	No. of alleles							
	1	2	3	4				
D3	0.011	0.240	0.559	0.190				
vWA	0.008	0.194	0.548	0.250				
D16	0.016	0.287	0.533	0.164				
D2	0.003	0.094	0.462	0.441				
D8	0.011	0.194	0.521	0.274				
D21	0.007	0.147	0.505	0.341				
D18	0.003	0.095	0.472	0.430				
D19	0.020	0.261	0.516	0.203				
THO	0.016	0.271	0.547	0.166				
FGA	0.003	0.116	0.500	0.381				

Table 2 The pro mixtures	bability of s for simulat	observing a ed profiles a	given num at the SGM ⁺	ber of allel ™ loci	es in a thre	ee-person				
Loci	No. of alleles showing									
	1	2	3	4	5	6				
D3	0.000	0.053	0.366	0.463	0.115	0.002				
vWA	0.000	0.037	0.285	0.468	0.194	0.016				
D16	0.001	0.086	0.397	0.411	0.100	0.005				
D2	0.000	0.008	0.104	0.385	0.393	0.110				
D8	0.001	0.041	0.258	0.436	0.236	0.029				
D21	0.000	0.023	0.192	0.428	0.302	0.055				
D18	0.000	0.007	0.109	0.392	0.396	0.096				
D19	0.003	0.078	0.352	0.401	0.152	0.014				
ТНО	0.001	0.074	0.395	0.439	0.088	0.002				
FGA	0.000	0.012	0.144	0.424	0.346	0.074				

Number of Alleles Observed with Simulated Four-Person Mixtures The simulation of four person mixtures suggests that 0.014% of four person mixtures would show four or fewer alleles and that 66% would show six or fewer alleles for the SGM Plus loci.

•

- The results for the Profiler Plus loci were 0.6% and 75%.
- · The equivalent values for the CODIS set from Paoletti et al. were 0.02% showing four or fewer and 76.35% showing six or fewer.

Buckleton et al. (2007) Towards understanding the effect of uncertainty in the number of contributors o DNA stains. FSI Genetics 1:20-28

- back to the initial component concentrations
- Start with loci possessing 4 alleles...

		150	170	190	219	230	250	279	290	310	330	
30:1		1.4			ii.						h.	h
90 110	130	150	170	190	299	290	250	270	290	210	330	
10:1		1.4			di.			. 4.			.11	u
90 110	130	150	170	190	210	230	250	270	290	210	930	
3:1	u. li	1.0						.11				ц.
90 110	530	150	170	190	299	290	250	279	290	210	100	
1:1	.uiu di	i ni			ы			L			,di	
80 110	130	150	170	190	210	230	250	279	290	310	330	
1:3	. 161				ы			111	.		м.	
80 113	130	150	170	190	210	230	250	270	290	210	330	
1:10	ilu .	1.		а.	1.1			11			h.	
			170	100	244	230	259	279	290	215	330	

	100					290			300		
30:1		. Ц.	11	h	1.1.1	.11	1	1.4		М.	Ы.
	100					200			300		
10:1			1.1	h	.11	11		11.1		1.	6
	100					290			300		
3:1			1.								
		. L.L.	. 444	-di	1. Ash	.11		. M . M		ada .	M.
4.4	100					200			200		
1:1		Alla	de			n.l	1	111.1	.1.	ala	444
	100					290			300		
1:3		14.			1.1		1				
	100		101	6.	. Likel	200	40.4	1.11.1	. 4.4	ARA	***
1:10							1				
		. 101		1.	l. l	1.1		1.11.1	.11	М.	
	100		-			290			300		
1.30	100	iin	Т	÷	. 11	200	1.	the	100	h.	1

Profiles	Used	In M	ixture	Samples
	1	Victim	Suspect	1
	D8S1179	13,15	12,12	
	D21S11	29,30	28,30	
	D7S820	10,12	8,10	
	CSF1PO	11,12	10,11	
	D3S1358	18,18	15,16	
	TH01	7,9	8,9.3	
	D13S317	11,11	11,13	
	D16S539	9,12	9,12	
	D2S1338	23,24	19,25	
	D19S433	14,15	14,15	
	vWA	14,18	15,17	
	TPOX	8,8	8,8	
	D18S51	15,16	16,17	
	AMEL	X,X	X,Y	
	D5S818	12,12	11,11	
	FGA	20,25	20,23	

stochastic effects with low level DNA samples

Statistical Interpretation of DNA Mixtures

- Interpret as single source from peak height differences, differential extraction, etc. and calculate random match probability (RMP)
 Calculate probability of exclusion (CPE)
- 4. Calculate likelihood ratio (LR)

Random Man Not Excluded (RMNE)

- = Probability of Exclusion (PE)
- John Buckleton (Forensic DNA Evidence Interpretation, p. 222) quotes Laszlo Szabo of Tasmania Forensic Science Laboratory: "Intuitively, RMNE is easier to explain to a jury and express in reports than the likelihood ratio, and is probably closer to what the court wants—e.g., the suspect matches the mixture, but what if this is the wrong person- then what is the probability that someone else in the population would also match the mixture (i.e., not be excluded as a contributor)."
- Buckleton (Forensic DNA Evidence Interpretation, p. 222) also quotes Bruce Weir: that exclusion probabilities "often rob the items of probative value"

Probability of Exclusion (RMNE)

Advantages

- Does not require an assumption of the number of contributors to a mixture
- Easier to explain in court

Disadvantages

- Weaker use of the available information (robs the evidence of its true probative power because this approach does not consider the suspect's genotype)
- Likelihood ratio approaches are developed within a consistent logical framework

John Buckleton, Forensic DNA Evidence Interpretation, p. 223

RMNE (CPE)

- Statements from DAB Recommendations on Statistics (FDT2e, p. 617)
- CPE provides a calculation of the estimated proportion of individuals <u>from a defined</u> <u>population group</u> that can be excluded as a <u>contributor</u> to an observed DNA mixture

Likelihood Ratios

Basic Math Terms

- When '+' is used, this means 'OR'
- When 'x' is used, this means 'AND'
- Pr. is shorthand for probability
- Therefore...
 - the probability of a 'AND' b happening together is
 Pr(a and b) = a x b
 the probability of a 'OR' b happening together is
 - Pr(a or b) = a + b

Slide information from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007)

Conditioning

- **Probabilities are conditional**, which means that the probability of something is based on a hypothesis
- In math terms, conditioning is denoted by a vertical bar
 Hence, Pr(a|b) means 'the probability of a <u>given</u> that b is true"
- The probability of an event *a* is dependent upon various assumptions—and these assumptions or hypotheses can change...

Slide information from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007)

Probability Example – Will It Rain? (3)

Formation of the Likelihood Ratio (LR)

• The LR compares two probabilities to find out which of the two probabilities is the most likely

The probability that it will rain in the afternoon when it is cloudy in the morning or Pr(a|c) is divided by the probability that it will rain in the afternoon when it is sunny in the morning or Pr(a|s)

$$LR = \frac{\Pr(a \mid c)}{\Pr(a \mid s)} = \frac{0.8}{0.2} = 4$$

Slide information from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007)

Probability Example – Will It Rain? (4) Explanation of the Likelihood Ratio $LR = \frac{\Pr(a \mid c)}{\Pr(a \mid s)} = \frac{0.8}{0.2} = 4$ • The probability that it will rain is 4 times more likely <u>if</u> it is cloudy in the morning than <u>if</u> it is sunny in the morning.

explanation could be misleading.

Slide information from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007

ŝ

LR

 $2p_1p_2 + 2p_1p_3 + p_1^2 \longrightarrow p_1(2p_2 + 2p_3 + p_1)$

	Likeliho	ood Ratio	o (LR) Ca	alculation	S 250 270				
	Evidence (Mixture)VictimA1, A2, A3A2, A3		Suspect	LR	8 10 354 1001				
			A ₁ , A ₂	$\frac{1}{p_1(2p_2+2p_3+p_1)}$	US Caucasian Data				
	8,10,12	10,12	8,10		$\begin{array}{c c} A_1 & P_1 & 0.151 \\ A_2 & 10 & P_2 & 0.243 \\ \end{array}$				
	$LR = \frac{1}{(0.151)[(2)(0.243) + 2(0.166) + (0.151)]}$								
	LR = 6.83 Does not consider peak height information								
	The prosecutior more likely than the perpetrator)	hypothesis (the the defense hy .	at the suspect i pothesis (that a	s the perpetrato an unknown, unr	r) is 6.83 times elated individual is				

Likelihood Ratios for the Following Hypotheses H_{o} : The mixture contains the DNA of the victim and the suspect H_d: The mixture contains the DNA of the victim and an unknown, unrelated individual Victim Suspect LR Evidence (Mixture) 1 A₁, A₂, A₃, A₄ $\mathsf{A}_1,\,\mathsf{A}_2$ A_3, A_4 $2p_{3}p_{4}$ A₁, A₂, A₃ A₁, A₂ ${\sf A}_1,\,{\sf A}_3\,\text{or}\,{\sf A}_2,\,{\sf A}_3\,\text{or}\,{\sf A}_3,\,{\sf A}_3$ 1 $p_3(2p_1+2p_2+p_3)$ A₁, A₂, A₃ A₁, A₁ A₂, A₃ 1

1. 2. 3		2.5	$2p_2p_3$
A ₁ , A ₂	A ₁ , A ₂	$A_1, A_1 \text{ or } A_1, A_2 \text{ or } A_2, A_2$	$\frac{1}{\left(p_1 + p_2\right)^2}$
A ₁ , A ₂	A ₁ , A ₁	$A_1, A_2 \text{ or } A_2, A_2$	$\frac{1}{p_2(2p_1+p_2)}$
A ₁ , A ₁	A ₁ , A ₁	A ₁ , A ₁	$\frac{1}{p_1^2}$
Adapted from Buck	leton (2005) Fo	prensic DNA Evidence Interpretation	n. Table 7.1. p. 229

http://www.fbi.gov/hq/lab/fsc/backissu/july2000/dnastat.htm

"The DAB finds either one or both PE or LR calculations acceptable and strongly recommends that one or both calculations be carried out whenever feasible and a mixture is indicated"

- Probability of exclusion (PE) · Devlin, B. (1993) Forensic inference from genetic markers.
 - Statistical Methods in Medical Research, 2, 241-262.
- Likelihood ratios (LR)
 - Evett, I. W. and Weir, B. S. (1998) Interpreting DNA Evidence. Sinauer, Sunderland, Massachusetts

Interlaboratory Studies

- Purpose...
 - Not a proficiency test
 - Most labs see them as opportunity to anonymously directly compare themselves to others
- STRBase section on interlab studies
 http://www.cstl.nist.gov/biotech/strbase/interlab.htm

A High Degree of Variability Currently Exists with Mixture Interpretation

- "If you show 10 colleagues a mixture, you will probably end up with 10 different answers"
 – Peter Gill, Human Identification E-Symposium, April 14, 2005
- Interlaboratory studies help to better understand why variability may exist between laboratories
- Most analysts are only concerned about their own lab protocols and do not get an opportunity to see the big picture from the entire community that can be provided by a well-run interlaboratory study

NIST Initiated Interlaboratory Studies						
Studies involving STRs	# Labs	Publications				
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. J. Forensic Sci. 42: 897-906				
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JM, Newall PJ, Reeder DJ, (2001) NIST Mixed Stain Studies #1 and #2: intertaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. J. <i>Forensis Sci.</i> 46: 1199-1210				
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. Anal. Chem. 75: 2463-2469. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study #3: signal intensity balance in commercial short tandem repeat multiplexes, Anal. Chem. 76: 6928-6934.				
DNA Quantitation Study (Jan-Mar 2004) QS04	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, J. Forensic Sci. 50(3):571-578				
Mixture Interpretation Study (Jan - Aug 2005) MIX05	69	Several presentations made Poster at 2005 Promega meeting (Sept 2005); available on STRBase				

NIST MIX05 Summary

Purpose of MIX05 Study

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- One of the primary benefits we hope to gain from this study is recommendations for a more uniform approach to mixture interpretation and training tools to help educate the community

MIX05 Study Design and Purpose

- Interlab studies provide a "big picture" view of the community
- Permit a large number of forensic practioners to
 evaluate the same mixture data
- Provide multiple cases representing a range of mixture scenarios
- Generate data from multiple STR kits on the same mixture samples to compare performance for detecting minor components
- The primary variable should be the laboratory's interpretation guidelines rather than the DNA extraction, PCR amplification, and STR typing instrument sensitivity
- Are there best practices in the field that can be advocated to others?

Requests for Participants in MIX05

Mixtures representing four different case scenarios have been generated at NIST with multiple STR kits and provided to laboratories as electropherograms.

We would like to receive the following information:

- 1) Report the results as though they were from a real case including whether a statistical value would be attached to the results. Please summarize the perpetrator(s) alleles in each "case" as they might be presented in court—along with an appropriate statistic (if warranted by your laboratory standard operating procedure) and the source of the allele frequencies used to make the calculation. Please indicate which kit(s) were used to solve each case.
- 2) Estimate the ratio for samples present in the evidence mixture and how this estimate was determined.
- Provide a copy of your laboratory mixture interpretation guidelines and a brief explanation as to why conclusions were reached in each scenario

MD http://www.c	X05 Results on Multi stl.nist.gov/biotech/strbase/i	ple Kits nterlab/MIX05.htm
	Case 1 evidence (mixture)	
Profiler Plus	المتناصلية المتنابية	ABI 3100 Generated Data was supplied on CD-ROM to labs as
COfiler	hand have	Genetyper NT or GeneMapperID) or Mac-converted files
Identifiler	يتشيه المتابلات	for Genotyper Mac
PowerPlex 16	المتلك والمتلك و	
SGM Plus	بهت المتصاد م	
	FMBIO data was also	made available upon request

Case	#2 has n	ornoti	rato	r ac	ma	ior co	mnoi	nent	and t	hus is	the .	oasio	st tr	sol	ve
CASE #2		0351368	VMA	EGA	AMEL	0851179	021511	018551	055818	0135317	075820	D165539	TH01	TPOX	CSEIP
Tye Perp	2779619	15.15	15.15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
LaND	Kit Used				-										
16	DesDive/Coffee														
6	DesDive/Coffee	16	16	20.24	× ×	11.12	28.22.2	17.10	0.12	12.14	8.10	10.11	793	0.10	7.10
91	SGM Plos	15	15	20,24	X Y	11.13	28,32.2	17.18	0,15	12,14	0,10	10,11	793	5,10	7,10
46	PP16	1.0		20,24	~	11,15	200,04.4	17,10				10,11	1,0.0		
37	ProPlus/Cofiler	-	15	20	XY	13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7.10
2	PD16	15	15.15	20.24	XY	11.13	28 32 2	17.18	8.13	INC	8 10	10.11	793	9.10	7.10
13	DD16 & Montiflor	16	16	20.24		11.13	28 32 2	17.18	8.13	12.14	8 10	10.11	793	9.10	7.10
34	ProPhys/Cofflar	15	15	20.24		11.13	28 32 2	17.18	8.13	12.14	8 10	10.11	793	9.10	7 10
20	Identifiler	16	15	20.24	XY	11.13	28 32 2	17.18	8.13	12.14	8 10	10.11	793	9.10	7.10
55	ProPlus/Coffer	15	15	20.24		11.13	28.32.2	17.18	8 13	12.14	8.10	10.11	793	9.10	7.10
21	ProPlus/Coffer	15.15	15.15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
73	ProPlus/Coffer	15.15	15.15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7.10
29	Identifiler	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7.10
64	All Kits	15.15	15.15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7.10
90	ProPlus/Cofiler	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7.10
9	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
4	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
33	ProPlus/Cofiler	-					-		-		-		-	-	
12	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
67	PP16	15	15,16	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
86	ProPlus/Cofiler	15.15	15,15	20,24		11,13	28.32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
79	ProPlus/Cofiler	15,15	15,15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
77	Identifiler	-				-	-		-		-	-	-	-	-
60	PP16	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
61	Identifiler	-					-						-	-	

S	ome Repor	ted Stats	for MIX05 Ca	ase #1
	Many of the 29 I	abs providing st	atistics used PopSt	ats 5.7
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
77	Identifiler	PE calculated	PE calculated	PE calculated
73	ProPlus/Cofiler	none provided	none provided	none provided
4	ProPlus/Cofiler	none provided	none provided	none provided
12	ProPlus/Cofiler	none provided	none provided	none provided
29	Identifiler	none provided	none provided	none provided
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
46	PP16	5.60E+09	3.80E+11	none provided
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
61	Identifiler	1.50E+06	260,000	2.40E+07
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100

	Which loci ar	e included in	each calculation?	
5	Some Differe	nces in F	Reporting Stat	istics
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	4.14E+07	1.97E+07	1.54E+08
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100
b	~10 orders of n ased on which a	nagnitude o alleles were	lifference (10 ⁵ to e deduced and re	10 ¹⁵) ported
	Remember the the same I	at these la MIX05 ele	abs are interpr ctropherogran	reting As

		Case 1	ASCLD-LAB	Solved loci
LabID	Kits Used	Caucasians	accredited?	listed?
90	ProPlus/Cofiler	1.18E+15	Yes	Yes
34	ProPlus/Cofiler	2.40E+11	Yes	Yes
33	ProPlus/Cofiler	2.94E+08	Yes	No
6	ProPlus/Cofiler	40,000,000	Yes	Yes
9	ProPlus/Cofiler	4.14E+07	No	No (CPE)
79	ProPlus/Cofiler	930,000	Yes	Yes
16	ProPlus/Cofiler	434,600	Yes	No
<u>Possi</u>	ble Reasons for Va	riability in Rep	orted Statistics:	
• Dif	ferent types of calc	ulations (CPE	vs RMP)	

Use of victim (e.g., major component in Case 1) profile stats

Locus	Allele	Peak height	Com profiles to of mi	ponent giving rise served xture	Comments
1	12	563	12	12,12	\$3/ /11/34 # 95% -*
Ds	15	244		12,15	12-15 not Soland; has at also made
	27	237	+1.25	***.78	of smarkering roly 2 contributions :
Dat	25	2.87	w.11mg		177 - 127 . 124 × 147 +4
	30	144			279-287 - 837 ph balance 7 -
	iz.	213	14	a. 14	of 12.19, \$ at Islam as that
De 1		171			J state, 5 in myn

All examples with Case #1

(~3:1 mixture with female victim as the major component – and victim profile is provided)

D891179	13	1081	Holder's IVARS	204			and spectra stars
D21511 D21511 D21511	28	972	-				31.4/104 * 0.1108
D21511	32.2	1010	mare.	404	dater .	2230	199/2246 = 0.1182
D18551 D18551 D18551 D18551 D18551	12 15 17 18	162 138 864 1033	m).nr~~	300	4 bees	2297	34/247 = 0.1301
055818 055818 055818 055818	8 11 12 13	1060 140 232 843	milars miler-17 = 57 (m) = 4	372 325 7.15	10 ALT 143.	12028	455/455E 0.1308
D135317 D135317 D135317 D135317	8 9 12	129 141 905	Now *	270	famel .	1992	¥10/,451-0.1039
075820 075820 075820	8 9 10	657 155 600	10/4	253 24		1010	234/55 * 0.1511
D351358 D351358	15 18	1543 124	the life -	248	whe	1667	3.48/467 = 0.1488
D165539 D165539 D165539 D165539	9 10 11	202 1420 1337 215	97" 4(14) 4 Minut - 84.	181 71 404	4 Hell 1 Aug + 1337 +	s 5181 499 s	And / 5141
TH01 TH01	7	709		168	the	1557	LET/1597 = 0.1075

Diffe	ere	nt	Re	ро	rtir	ng	For	m	ats	s for	MIX	(05	Da	ata
1	NST	MIX	6 Cane 1	Bawet o	s the dat	and Des	an Den 10	ų.						
Les.	Victore	*	Perpet- rator	- 10	Cavel- denae	4/4	Average Ratis	102	Three Nett					
CIBINOR	15	374	15	810	1	3.74	3.65 1	0.10	0.027					
THEI	8	274	1	1		2.74	274 1	144						
D2+bes	27	1.40	10	07		28	207.1	007	1001					
DINKS	12	3.19	15	1	H	3.98	327:1	0.08	8.004					
Dere	1		1	1		124	100.1	\$25	11 100					
000818	11	NA	11	NA	H	NA	TEA .	214	41					
0136317	71	2.07	12		H	2.07	207.1	NA	-					
1039669	9	1	10	044	- 84	2.27	2.27:1	38A						
D 168836	11	2.24	10 11	1	**	2.24	2.58 1	8.06	8.05					
C3F190	11	1.08	11	100		144	NA	.944.						
Papial	10	221	10	1	122	2.M 2.37 1.96 2.10	213.1	4 11	400					
AWY	17	177	15	1		177	177.1	76						
DBHHM	14 15	1.17	12 12	05		234	2.24 1	0.10	0.045					
TPOX	8	244	0	NA	H	-144	HA.	364	181					
Amalogueun	XX	1.30	X	1	**	1.30	1.3011	.84	183					
FGA	19 21	3.04	88	123	11	3(A 2,47 2,30	244.3	0.40	0.154					

Table 1 SU/	IMARY OF DNA 1	APING RESULTS: Alleles Deti	reted
Locus	Victim P Reference	Bern S Questioned Sample	No attempt to deduc perpetrator alleles (foreign profile)
D3S1358	15,16	15,16,(17)	
vWA.	17	15.bt.17	
FGA	19,21	19,20,21,22	
Amelogenin	X	X(Y)	
D8S1179	14,15	12,14,15	
D21S11	27,31.2	27,(28),31.2	
D18551	12,15	12,15,(16)	
D55818	11	11	
D138317	11	11,12	
D75820	9,10	9,10	
D105359	11,12	10,11,12	
TROX	9	7,8	
CSEIPO	11.12	11.12	

Profile that	would be put into CO	DIS
LOCI	CODIS ENTRY * obligate allele	OTHER ALLELE'S IN SUSPECT'S POSSIBLE PROFILE
D3S1358	17	16,17
VWA	15*	15,17
FGA	20,22	20,22
D8S1179	12	12,12
D21S11	28*	28,31.2
D18S51	15*	15,16
D5S818	-	
D13S317	12	12,12
D7S820		10
D16S539	10,11*	10,11
THO1	7*	7.8 maybe
TPOX	8	8 maybe
CSF1PO	-	11,12 maybe

	Hems						
Locus	"S" Case 1 Evid.	"P" Case 1 Victim					
D3S1358	15, 16, *	15, 16					
D16S539	(10), 11, (12)	11, 12					
AMEL	X,*	X					
THO1	(7), 8	ö					
TPOX	8	8					
CSF1PO	11, 12	11, 12					
D75820	9, 10	9, 10					
VWA	(15), 17	17					
FGA	19, 20, 21, 22	19, 21					
D8S1179	12, 14, 15	14, 15					
D21S11	27, 31.2,*	27, 31.2					
D18S51	12, 15, (16)	12, 15,					
D5S818	11	11					
D13S317	11, 12	11					

description	D35135	VWA.	FGA	AMEL	D8S1179	D21511	D18551	D55818	D135317	D75820	D165539	TH01	TPOX	CSFIP
evid 1	(17)	15]17	21/22	00	12/14/15	(28)	(16)	11,11	THE	9110	10/11	7 8	8,8	11,12
Pro+/CO_P: victim 1 reference	15,16	17,17	19,21	X,X	14,15	27,31.2	12,15	11,11	11,11	9,10	11,12	8,8	8,8	11,12
Male interpreted from evidence 1	17	15,15 15,17	20,22	X,Y	12,12	28	16	11,11	12,12	Nd	10,11	7,7 7,8	Nd	Nd
	() Indicate Single nu Interprete where a si	e values so es minor a mbers and d profile s ingle gens	parated b liele detec numbers numbers type could	y a comm ted. separates at the vis d not be c	is represent i i by "[" repre- tim is presen conclusively o	sent an aileis t in the evid determined.	e only des ence mixt Nd=not d	ignation ra are of two clermined	ther than people. I due to let	a genoty; Aore than rel of rest	e. one genoly its.	pe may	be listal	

Value of the MIX05 Study http://www.cstl.nist.gov/biotech/strbase/interlab/MIX05.htm

- Data sets exist with multiple mixture scenarios and a variety of STR kits that can be used for training purposes
- A wide variety of approaches to mixture interpretation have been applied on the same data sets evaluated as part of a single study
- Interpretation guidelines from many laboratories are being compared to one another for the first time in an effort to determine challenges facing future efforts to develop "expert systems" for automated mixture interpretation
- We are exploring the challenges of supplying a common data set to a number of forensic laboratories (e.g., if a standard reference data set was ever desired for evaluating expert systems)

Conclusions from the MIX05 Study (Opportunities for Improvement)

- It is worth taking a closer look at protocol differences between labs to see the impact on recovering information from mixture data
- Training should help bring greater consistency
- Expert systems (when they become available and are used) should help aid consistency in evaluating mixtures and help produce more uniform reporting formats

NIST Software Programs to Aid Mixture Work Excel-based programs developed by David Duewer (NIST)

- mixSTR (developed at request of Palm Beach Sheriff's Office)
 - Does not interpret data (relies on user inputted alleles following STR data review)
 - Aids in the organization of STR mixture information
 - Considers only the presence/absence of alleles (no peak heights used)
- Virtual MixtureMaker (developed to aid MIX05 sample selection)
 - Creates mixture combinations through pairwise comparisons of input STR profiles
 - Returns information on the number of loci possessing 0,1,2,3,4,5, or 6 alleles in each 2-person mixture (also reports number of loci in each sample with 0,1,2, or 3 alleles)
 - Useful for selection of samples in mixture or validation studies with various degrees of overlapping alleles in combined STR profiles
 - Useful in checking for potentially related individuals in a population database

Programs can be downloaded from NIST STRBase web site: http://www.cstl.nist.gov/div831/strbase/software.htm

mixSTR Program

Comparisons are made between

- suspect and evidence (S/E) alleles,
- suspect and suspect (S/S) alleles (to look for potential close relatives),
- evidence and other evidence (E/E) sample(s) alleles (to see how various evidentiary samples compare to one another), and
- controls to evidence (C/E) and controls to suspect (C/S) alleles (as a quality control contamination check).

· 4 ·		e ge	3 (#	* . 27	100.0	8.1		· · · ·	#114 105CJC-A #	403-16	1251 Auto	Data fami HD Deski		0.0
- 9	9 1	P	0 1	P4	LI	K.	2		0 1	P	D	0	A	-
- 1.	_	-	-	12,13	. 0	-	11	8,12,18	.11,14	11	2,111,137,147	14,12	# 35alat	2
	16	0	18		12	7			.16			#Loc: In Ex Tital	E.130310	21
														28
	(5) 3-1 co #+ # -Alates 23 1 1 20 8 0 2 8 15 0 1 13,15 10 1 15				(3) 8A,80		(3)		70	(3) 7			24	
Evide	Adelet	A	1. 1	Evidence:	Abries.	\$-	8+	Evidence	-,42emes	\$.	Exdence	J. Bannister (G	Locus	15
- 2	- 20	-10	1	20,23					- 24	1	23.24*	21,23	FGA	31
	-11-12	-16	2-	12.15	12.15	-1-		14 111 121			0.11.0*	9,11	Call 197	23
1.	13,15	-14	-	12,13	13,19	-	-2-	14,137,157	13,15	0	12,14,157	16	LIGS11/9	10
		1	1	10, 18 X V	-	1	- 5	19.10 X Y*		- 0	10.10 X X	10.16 X V	Americania	3
- +	12 17	-31	0	12.17			- 11		- 0	1	7.9	7.8	Porta E	11
1	17,18	2	0	17,18	15	2	0	15	15,17	1	15,18,17*	13.16	D18551	12
		1	1	29		1	1	28	1.1	0	28,29*	30,29	071511	23
	. 7	1	1	6,7	7	1	1	7.6*	. 1	1	7,6*	6.8	TH01	54
- 1	14,17	2	0	14,17	16	2	0	16	16	0	15,16,18	15,18	D051358	线
T	12,13	-34	-9	12,13	-				11		11.9*	5,9	Perts D	
-	0.12	-	0	12		-		4.0		0	10,117,127	10,11	CSF1PO	2
-	9,13	4	-2-	9,13	-	1	- 1	- 11	0.15		0.11,12	11,12	0103539	
- 1	10	-11	1	10.11		~	-	12.51*	0.14	- 6	17.65*	11 12	D135317	5
t.		1	1	12,13	8.13	1	1	0,12,13	11,13	0	2,11",13",14"	12.14	D55818	11
			8			9	13		-	0		.30	# Abotes	12
	16	16	11		12	7			16	6		# Loci In, Ex, Total		43

Relevant Literature on Mixture Interpretation

General Information

Gill, P. (2002) Role of short tandem repeat DNA in forensic casework in the UK--past, present, and future perspectives. *BioTechniques* 32(2): 366-385.

Gill, P., Brenner, C.H., Buckleton, J.S., Carracedo, A., Krawczak, M., Mayr, W.R., Morling, N., Prinz, M., Schneider, P.M., Weir, B.S. (2006) DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. *Forensic Sci. Int.* 160: 90-101.

Gill, P., et al. (2008) National recommendations of the technical UK DNA working group on mixture interpretation for the NDNAD and for court going purposes. *FSI Genetics* 2: 76-82.

Ladd, C., Lee, H.C., Yang, N., Bieber, F.R. (2001) Interpretation of complex forensic DNA mixtures. *Croatian Med. J.* 42(3): 244-246.

Schneider, P.M., Gill, P., Carracedo, A. (2006) Editorial on the recommendations of the DNA commission of the ISFG on the interpretation of mixtures. *Forensic Sci. Int.* 160: 89.

Schneider, P.M., Fimmers, R., Keil, W., Molsberger, G., Patzelt, D., Pflug, W., Rothamel, T., Schmitter, H., Schneider, H., Brinkman, B. (2006) General recommendations of the (German) stain commission on the interpretation of DNA results from mixed stains. *Rechtsmedizin* 16:401-404. (article in German)

Torres, Y., Flores, I., Prieto, V., Lopez-Soto, M., Farfan, M.J., Carracedo, A., Sanz, P. (2003) DNA mixtures in forensic casework: a 4-year retrospective study. *Forensic Sci. Int.* 134: 180-186.

Mixture Detection and Component Profile Deconvolution

Clayton, T.M., Whitaker, J.P., Sparkes, R., Gill, P. (1998) Analysis and interpretation of mixed forensic stains using DNA STR profiling. *Forensic Sci. Int.* 91: 55-70.

Cowell, R.G., Lauritzen, S.L., Mortera, J. (2007) Identification and separation of DNA mixtures using peak area information. *Forensic Sci. Int.* 166(1):28-34

Egeland, T., Dalen, I., Mostad, P.F. (2003) Estimating the number of contributors to a DNA profile. *Int. J. Legal Med.* 117: 271-275.

Evett, I.W., Buffery, C., Willott, G., Stoney, D. (1991) A guide to interpreting single locus profiles of DNA mixtures in forensic cases. *J. Forensic Sci. Soc.* 31: 41-47.

Evett, I.W., Gill, P.D., Lambert, J.A. (1998) Taking account of peak areas when interpreting mixed DNA profiles. *J. Forensic Sci.* 43(1): 62-69.

Evett, I.W., Foreman, L.A., Lambert, J.A., Emes, A. (1998) Using a tree diagram to interpret a mixed DNA profile. *J. Forensic Sci.* 43(3): 472-476.

Gill, P., Sparkes, R.L., Pinchin, R., Clayton, T.M., Whitaker, J.P., Buckleton, J.S. (1998) Interpreting simple STR mixtures using allelic peak areas. *Forensic Sci. Int.* 91: 41-53.

Shrestha, S., Strathdee, S.A., Broman, K.W., Smith, M.W. (2006) Unknown biological mixtures evaluation using STR analytical quantification. *Electrophoresis* 27: 409-415.

Tomsey CS, Kurtz M, Flowers B, Fumea J, Giles B, Kucherer S. (2001) Case work guidelines and interpretation of short tandem repeat complex mixture analysis. *Croatian Med. J.* 42: 276-280.

Designating True Alleles versus Artifacts

Gill, P., Sparkes, R., Kimpton, C. (1997) Development of guidelines to designate alleles using an STR multiplex system. *Forensic Sci. Int.* 89: 185-197.

Gill, P., Sparkes, R.L., Buckleton, J.S. (1998) Interpretation of simple mixtures when artifacts such as stutters are present—with special reference to multiplex STRs used by the Forensic Science Service. *Forensic Sci. Int.* 95: 213-224.

Kloosterman, A.D. and Kersbergen, P. (2003) Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci. *J. Soc. Biol.* 197(4): 351-359.

Leclair, B., Fregeau, C.J., Bowen, K.L., Fourney, R.M. (2004) Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. *J. Forensic Sci.* 49: 968-980.

Leclair, B., Sgueglia, J.B., Wojtowicz, P.C., Juston, A.C., Fregeau, C.J., Fourney, R.M. (2003) STR DNA typing: increased sensitivity and efficient sample consumption using reduced PCR reaction volumes. *J. Forensic Sci.* 48(5): 1001-1013.

Meldgaard, M. and Morling, N. (1997) Detection and quantitative characterization of artificial extra peaks following polymerase chain reaction amplification of 14 short tandem repeat systems used in forensic investigations. *Electrophoresis* 18: 1928-1935.

Sparkes, R., Kimpton, C., Watson, S., Oldroyd, N., Clayton, T., Barnett, L., Arnold, J., Thompson, C., Hale, R., Chapman, J., Urquhart, A., Gill, P. (1996) The validation of a 7-locus multiplex STR test for use in forensic casework. (I). Mixtures, ageing, degradation and species studies. *Int. J. Legal Med.* 109: 186-194.

Sparkes, R., Kimpton, C., Gilbard, S., Carne, P., Andersen, J., Oldroyd, N., Thomas, D., Urquhart, A., Gill, P. (1996) The validation of a 7-locus multiplex STR test for use in forensic casework. (II), Artefacts, casework studies and success rates. *Int. J. Legal Med.* 109: 195-204.

van Oorschot, R.A., Gutowski, S.J., Robinson, S.L., Hedley, J.A., Andrew, I.R. (1996) HUMTH01 validation studies: effect of substrate, environment, and mixtures. *J. Forensic Sci.* 41: 142-145.

Expert System Software Approaches

Bill, M., Gill, P., Curran, J., Clayton, T., Pinchin, R., Healy, M., and Buckleton, J. (2005) PENDULUM-a guideline-based approach to the interpretation of STR mixtures. *Forensic Sci. Int.* 148: 181-189.

Mortera, J., Dawid, A.P., Lauritzen, S.L. (2003) Probabilistic expert system for DNA mixture profiling. *Theor. Popul. Biol.* 63: 191-205.

Perlin, M. W. and Szabady, B. (2001) Linear mixture analysis: a mathematical approach to resolving mixed DNA samples. *J. Forensic Sci.* 46(6): 1372-1378.

Perlin, M.W. (2006) Scientific validation of mixture interpretation methods. *Proceedings of Promega's Seventeenth International Symposium on Human Identification*. Available at http://www.promega.com/geneticidproc/ussymp17proc/oralpresentations/Perlin.pdf

Wang, T., Xue, N., Birdwell, J.D. (2006) Least-squares deconvolution: a framework for interpreting short tandem repeat mixtures. *J. Forensic Sci.* 51(6): 1284-1297.

Interlaboratory Studies on Mixture Interpretation

Duewer, D.L., Kline, M.C., Redman, J.W., Newall, P.J., Reeder, D.J. (2001) NIST mixed stain studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. *J. Forensic Sci.* 46(5): 1199-1210.

Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST mixed stain study 3: signal intensity balance in commercial short tandem repeat multiplexes. *Anal. Chem.* 76: 6928-6934.

Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. *Anal. Chem.* 75: 2463-2469.

Statistical Calculations and Issues

Balding, D.J. (2005) *Weight-of-evidence for Forensic DNA Profiles*. John Wiley & Sons; see mixture section on pp. 101-110.

Brenner, C.H., Fimmers, R., Baur, M.P. (1996) Likelihood ratios for mixed stains when the number of donors cannot be agreed. *Int. J. Legal Med.* 109:218-219.

Buckleton, J.S., Evett, I.W., Weir, B.S. (1998) Setting bounds for the likelihood ratio when multiple hypotheses are postulated. *Sci. Justice.* 38: 23-26.

Buckleton, J.S., Curran, J.M., Gill, P. (2007) Towards understanding the effect of uncertainty in the number of contributors to DNA stains. *FSI Genetics* 1:20-28.

Clayton, T. and Buckleton, J. (2005) Mixtures. Chapter 7 in *Forensic DNA Evidence Interpretation* (Eds.: Buckleton, J., Triggs, C.M., Walsh, S.J.), CRC Press, pp. 217-274.

Curran, J.M., Triggs, C.M., Buckleton, J.S., Weir, B.S. (1999) Interpreting DNA mixtures in structured populations. *J. Forensic Sci.* 44(5): 987-995.

Curran, J.M., Gill, P., Bill, M.R. (2005) Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. *Forensic Sci. Int.* 148: 47-53.

Fung, W.K. and Hu, Y.-Q. (2001) The evaluation of mixed stains from different ethnic origins: general result and common cases. *Int. J. Legal Med.* 115: 48-53.

Fung, W.K. and Hu, Y.-Q. (2002) Evaluating mixed stains with contributors of different ethnic groups under the NRC-II Recommendation 4.1. *Stat. Med.* 21: 3583-3593.

Fung, W.K. and Hu, Y.-Q. (2002) The statistical evaluation of DNA mixtures with contributors from different ethnic groups. *Int. J. Legal Med.* 116: 79-86.

Fung, W.K., Hu, Y.Q., Chung, Y.K. (2006) On statistical analysis of forensic DNA: theory, methods and computer programs. Forensic Sci. Int. 162: 17-23.

Hu, Y.-Q. and Fung, W.K. (2003) Interpreting DNA mixtures with the presence of relatives. *Int. J. Legal Med.* 117: 39-45.

Hu, Y.-Q. and Fung, W.K. (2003) Evaluating forensic DNA mixtures with contributors of different structured ethnic origins: a computer software. Int J Legal Med. 117: 248-249.

Hu, Y.-Q. and Fung, W.K. (2005) Evaluation of DNA mixtures involving two pairs of relatives. *Int. J. Legal Med.* 119: 251-259.

Lauritzen, S.L. and Mortera, J. (2002) Bounding the number of contributors to mixed DNA stains. *Forensic Sci. Int.* 130:125-126.

Weir, B.S., Triggs, C.M., Starling, L., Stowell, L.I., Walsh, K.A.J., Buckleton, J.S. (1997) Interpreting DNA mixtures. *J. Forensic Sci.* 42(2): 213-222.

Defense Attacks on Mixture Interpretation

Gilder, J.R., Doom, T.E., Inman, K., Krane, D.E. (2007) Run-specific limits of detection and quantitation for STR-based DNA testing. *J. Forensic Sci.* 52(1): 97-101.

Paoletti, D.R., Doom, T.E., Krane, C.M., Raymer, M.L., Krane, D.E. (2005) Empirical analysis of the STR profiles resulting from conceptual mixtures. *J. Forensic Sci.* 50(6): 1361-1366.

Y-STRs Can Benefit Some Mixture Samples Compared to Autosomal STRs

Cerri N, Ricci U, Sani I, Verzeletti A, De Ferrari F. (2003) Mixed stains from sexual assault cases: autosomal or Y-chromosome short tandem repeats? *Croatian Med. J.* 44: 289-292.

Parson, W., Niederstatter, H., Brandstatter, A., Berger, B. (2003) Improved specificity of Y-STR typing in DNA mixture samples. *Int. J. Legal Med.* 117: 109-114.

Prinz M, Boll K, Baum H, Shaler B. (1997) Multiplexing of Y chromosome specific STRs and performance for mixed samples. *Forensic Sci. Int.* 85: 209-218.

Y-STR Mixture and Statistical Issues

Butler, J.M., Decker, A.E., Kline, M.C., Vallone, P.M. (2005) Chromosomal duplications along the Y-chromosome and their potential impact on Y-STR interpretation. *J. Forensic Sci.* 50(4): 853-859.

Diederiche, M., Martin, P., Amorim, A., Corte-Real, F., Gusmao, L. (2005) A case of double alleles at three Y-STR loci: forensic implications. *Int. J. Legal Med.* 119: 223-225.

Fukshansky, N. and Bar, W. (2005) DNA mixtures: biostatistics for mixed stains with haplotypic genetic markers. *Int. J. Legal Med.* 119: 285-290.

Wolf, A., Caliebe, A., Junge, O., Krawczak, M. (2005) Forensic interpretation of Y-chromosomal DNA mixtures. *Forensic Sci Int.* 152: 209-213.