

Outline

- NEST work at Marshall University
- Some mixture deconvolution tools
- NIST experiments

NEST

- NIJ Expert Systems Testbed
- Evaluate Expert Systems

 Single-source samples initially; then mixed specimens
 GeneMapperTM /D Software v. 3.2 (GMID)
 - GMID-X
 - TrueAllele® System 2
 FSS-i³
- Workshops and Training Sessions
- Summarize Features and Limitations
- http://forensics.marshall.edu

Pref Ar	ng Tulers	ile 1	Mairy	Property	m Toleren		Name of Street	1									
	10%			194		-	80	1									
Weig	pt: Mass	-	. 104	right Mini	inun	Vie	pht Mean	1									
	38% 2.1			20% 4.1		1	(62)	3									
Long	Allele	Area	P	'ussible (Contribut	irs	Contribut	ref A	np Rule Costribut	- 2	Mix Prop Re	ie .	80	Card	t wheth	Cent	·
	15	4405	10	10	15	16		TV.		Ty.	416 1.1	Ty	Indude	16	16	15	15
	18	6430	15	15	15	18	60%	Y	100%	Y	-19% >10.1	N	-				
			18	18	15	16	C0%	Y	60%	Y	+	Y	Indude	48	**	48	F
		-	16	58	15	18	100%	Y	148%	Y	81% 1.4	N					
0331356			18	18	18	10		Y		¥	69% 1:1	N					
			15	10	15	10	100%	Y	09%	Y	119% <1.10	N					
			16	18	1.0	18	14756	14	1008	¥	1846.01	- ×	Incidential Incident	15	16	14	
	Data	base (Consol	idation	for D3	S1358							16	F	F		F
	19	7227	21	22	19	20	147%	Y	237%	N	55% 1:1	N	•	•			
	20	3051	20	22	19	21	88%	Y	142%	Y	65% 1:2	N		•		•	
	21	5101	20	21	19	22	60%	Y	208%	N	57% 1:1	N		•			
FGA	22	3470	19	22	20	21	208%	N	60%	Y	43% 1:1	Y				•	
	•		19	21	20	22	142%	Y	88%	Y	35% 2:1	Y	Indude	19	21	20	22
	•		19	20	21	22	237%	N	147%	Y	45% 1:1	Y		•			
						atabase	Concolidatio	-	EGA	-		-		10	24	20	22

Least-Square Deconvolution

- Considered a filter
- Gives most likely genotype combinations
- Only inputs are allele designation and peak height/area
- Before LSD calculation, proper allele calls required
 Input GMID output table or enter manually
 no artifacts
- Looks at each locus separately
- Calculates best-fit mass proportions and error residuals for all possible genotype combinations
- LDS results reviewed by analyst who then applies heuristic guidelines to create final profiles

Vang T, Xue N, Birdwell J. Least-square deconvolution: a framework for interpreting short tandem repeat mixtures. J Forensic Sci. 2006;51(6):1284-1297.

		Alleles in	lleles in	LSD Results			
	Locus	the minture	Peak Data	Genotype of Person 1	Genotype of Person 2	Mass Ratio	
LSD Final	DJ51358	3	15 3352 16 5660 17 2208	16,17	15,16	1015	
Output	VWA	2	15 872 17 2834	រេ,រេ	17,17	1.03.2	Person 1 = minor
	FGA	4	19 1339 20 519 21 1513 22 588	20,22	19,21	1028	contributor
	Amelagenia	4	X 2272 Y 469 Y 1513 Y 588	ų	v	1.01.92	contributor
	D651179	3	12 3372 14 3595 15 2757	13,13	12,14	1025	
	D21511	3	27 3092 28 1899 31 2 4333	28,31.2	27,31.2	1.017	
	D18551	3	12 1525 15 1584 16 423	16,16	12,15	1073	
	D55818	1	11 3468	11,11	11,11	11	
	D135317	2	11 7486 12 3645	11,11	11,12	1.01.9	

DNA_DataAnalysis

- U.S. Army Criminal Investigation Laboratory (USACIL)
- Developed by Tom Overson
- Mouse-driven program that was written in Visual Basic and runs in Microsoft $\mathsf{Excel}\ \mathsf{2003}$ ٠
- NOT an expert system DNA data interpretation tool to aid analysts
 Check controls, ladders
 Matching
 Statistics
 Frequency, LR, PI
 Mixture Interpretation
- Requires proper allele calls and output table from GMID

http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_MixtureWorkshop.htm

 -					Contract Property and a
	Hards	00159390(13): 273 Mart Nut, Back, Back, 28 KB1 00153300 Ru, Fa, FS 285, 599, 371 Cr, 500-66, 394 L1, 90-43			
Radit (70) Radit (70) Baltit (70) State (70) <	1 adi 1	al height cance are 3== (2.2). All 8-Cl: 3-London: Alaber (10140); 19 (541); 20 (580); 3 54, 25 (394 = 3.45); a = 0.441 55, 25 (494 = 5.34); a = 0.443	+ (394), 25 C	171)	
		List of possible genotype combinati without reference	ons s		
		applied			

Case #	Parts Female	Parts Male	Unique Profiles	Challenges
1	3	1		
2	i i	3	***	
3	1	ા	Male missing X (only Y)	Montures at or near 1:1 are has to separate
4	7	1	Male triallelic at TPOX	Triallele and low minor contributor

Materials and Methods

• Several STR Kits:

- SGM+, Profiler Plus, Identifiler, COfiler, Powerplex 16

• 3130xl

- Data already collected and profiles in GMID v3.2
- Mixture deconvolution tools:

i-STReam
 LSD

http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_MixtureWorkshop.htm

Experiment 2 – Replicates and Ratios Mixture Deconvolution

http://www.cstl.nist.gov/biotech/strbase/training/AAFS2008_MixtureWorkshop.htm

Materials and Methods

- 6-7 amplification replicates per ratio per kit
 PCR variation
- How do the deconvolution tools handle this variation?
 Different results for the same mixture?
 - Incorrect calls?

Some i-STReam Observations... • GeneMapper ID filters set at zero to allow all alleles into FSS-i³ Some minor alleles filtered out as stutter and not called Advie Peak Deb En Set AnafLSTR, Des, y Dite weiter-specific statter rate r Tri 0.0 Pene 00 00 00 00 00 00 00 00 00 00 00 00 Tettre 00 00 00 00 00 00 00 00 00 00 00 00 Marker Report Cut-off Value Minus A Rater Minus A Datavi Fram To Minut Stater Role Minut Stater Date Fram To Plus Stutter Fisito Plus Stutter Distance From To nelogenin Cutoff Range Filter... Factory Defaults OK Cancel

Some i-STReam Observations...

- Some incorrect calls
 Incorrect calls can be explained by variation in peak height ratios
 26 / 4080 alleles

Very conservative - F designations allow the program to not make a definite allele call

PCR Variation and Incorrect Calls

- · 26 incorrect calls out of 4080 alleles
- Plotted peak height ratios for replicates
 According to kit and ratio
 - Amplification variation

Conclusions

- LSD about 84% accuracy
- i-STReam above 95% accuracy
- DNA_DataAnalysis has more user interaction with data
- · Amplification variability can lead to different and/or incorrect calls
- Only certain mixture ratios are solvable
 Window of opportunity between 1:3 and <1:8
 Influence calculations
- Optimization of program parameters very important
 Filter settings, threshold settings, etc.

