DNA Mixture Interpretation:

Principles and Practice in Component Deconvolution and Statistical Analysis \qquad

Statistical Analysis of Mixtures

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Statistics and DNA Mixture
Interpretation
George Carmody
February 19, 2008
AAFS Workshop
Washington, DC
http://www.carleton.ca/~gcarmody

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation of Complex Forensic DNA Mixtures

Carll Ladd, Henry C. Lee, Nicholas Yang, Frederick R. Bieber'
Sate of Connecticut Department of Public Safery, Division of Scientific Services, Forensic Science Laboratory, Conv; and 'Departments of Pathology, Brigham and Wormen's Hosplal and Harvard Medical School, Boston, Mass, USA

Ladd et al. 2001. Croatian Medical Journal 43(3): 244-246
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mixture Interpretation Possibilities

\qquad

- 1. Qualitative statement ('..cannot exclude..') \qquad
- 2. Interpret as since source from peak height differences, differential extraction, etc. and calculate random match
\qquad probability
- 3. Calculate probability of exclusion (CPE)
- 4. Calculate likelihood ratio
\qquad
\qquad
\qquad
\qquad

Mixture interpretation
- How many contributors?
- Exclusion probability (CPE)
- Likelihood ratio calculations comparing two
alternative hypotheses

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimate genotype frequency:

1. Frequency at each locus

Hardy-Weinberg Equilibrium
2. Frequency across all loci

Linkage Equilibrium
3. Corrections (NRC II)
' θ ' correction
minimum allele frequency
confidence interval

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What do the numbers mean?
Random match probability $=.000001$
Random match probability $=1 / 1,000,000$
Exclusion probability $=.999999$
Exclusion probability $=99.9999 \%$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exclusion Probability =

\qquad
the combined frequency of all \qquad genotypes that could be excluded \qquad from the mixture, assuming H-W equilibrium for the genotype \qquad frequencies. \qquad

All possible genotypes \qquad

- 3 alleles: A_{1}, A_{2}, A_{3}
- $A_{1} A_{1}, A_{1} A_{2}, A_{1} A_{3}, A_{2} A_{2}, A_{2} A_{3}, A_{3} A_{3}$
- 4 alleles: $A_{1}, A_{2}, A_{3}, A_{4}$
- $\mathrm{A}_{1} \mathrm{~A}_{1}, \mathrm{~A}_{1} \mathrm{~A}_{2}, \mathrm{~A}_{1} \mathrm{~A}_{3}, \mathrm{~A}_{1} \mathrm{~A}_{4}, \mathrm{~A}_{2} \mathrm{~A}_{2}, \mathrm{~A}_{2} \mathrm{~A}_{3}, \mathrm{~A}_{2} \mathrm{~A}_{4}, \mathrm{~A}_{3} \mathrm{~A}_{3}$, \qquad $\mathrm{A}_{3} \mathrm{~A}_{4}, \mathrm{~A}_{4} \mathrm{~A}_{4}$
- k alleles: $k(k+1) / 2$ genotypes; HWE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assumptions:

\qquad

- Independence \qquad
- All contributors of same racial group
- All unrelated
- No allele dropout
- No intensity differences \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Possibilities:
Calculate using P_{E} for all loci
Calculate RMP for single contributor
loci only
Use more definitive hypotheses

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

With STRs and intensity differences, an evidence profile may have... \qquad
some loci where the contributors can be \qquad determined as single sources
and others where this may not be possible
loci with peaks below the LOQ should not be used in the CPE calculation

TECHical note min	
Run-Specific Limits of Detection and Quantitation for STR-based DNA Testing	
LOD = mean background + 3 s.d.	
LOQ = mean background + 10 s.d.	
peak height imbalance	
stutter percentage	

\qquad
on R. Gilder,' M.S.; Travis E. Doom. ${ }^{2}$ Ph.D.; Keith Inuman, ${ }^{3}$ M. Crim. and Dan E Krane. ${ }^{4}$ Ph.D.

Run-Specific Limits of Detection and
Quantitation for STR-based DNA Testing \qquad
\qquad
an background +10 s.d. \qquad
stutter percentage
\qquad
\qquad

Bayes formula (odds form): \qquad
$\left(\frac{P(G \mid E)}{P(\bar{G} \mid E)}\right)=\left(\frac{P(E \mid G)}{P(E \mid \bar{G})}\right) \times\left(\frac{P(G)}{P(\bar{G})}\right)$ \qquad
\qquad
posterior odds $=($ likelihood ratio $) \times($ prior odds $)$ \qquad
$G=$ guilt; $\quad E=D N A$ evidence $\quad P(G)+P(\bar{G})=1$
mutually exclusive
\qquad
\qquad
\qquad
Bayes formula (odds form):
$\left(\frac{P\left(H_{1} \mid E\right)}{P\left(H_{2} \mid E\right)}\right)=\left(\frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}\right) \times\left(\frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}\right)$
posterior odds $=($ likelihood ratio) \times (prior odds)
$E=$ DNA evidence
$H_{1}=$ hypothesis \#1 $\left.\quad H_{2}\right)=$ hypothesis \#2
mutually exclusive

Likelihood ratio - interpretation

- LR can range from $0 \longleftrightarrow 1 \longleftrightarrow \infty$
- $L R<1$; the genetic evidence has more support from denominator hypothesis than from numerator hypothesis
\qquad
- $\mathrm{LR}=1$; the genetic evidence has equal support from both numerator/denominator hypotheses \qquad
- LR > 1; the genetic evidence has more support from numerator hypothesis than from denominator hypothesis.

Likelihood ratio - interpretation	
• LR	Verbal equivalent
• $1-10$	'limited support'
- $10-100$	'moderate support'
- $100-1,000$	'strong support'
$\gg 1,000$	'very strong support'
- from:	
- - Evett, I.W. \& B.S. Weir. 1998. Interpreting DNA Evidence. (p. 226)	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bayes formula (odds form):
$\left(\frac{P\left(H_{1} \mid E\right)}{P\left(H_{2} \mid E\right)}\right)=\left(\frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}\right) \times\left(\frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}\right)$
posterior odds $=($ likelihood ratio $) \times($ prior odds $)$
$\mathrm{E}=\mathrm{DNA}$ evidence
$\mathrm{H}_{1}=$ hypothesis \#1 $\mathrm{H}_{2}=$ hypothesis \#2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures P. Gill ${ }^{2, *}$, C.H. Brenner ${ }^{\text {b }}$, J.S. Buckleton ${ }^{\text {c }}$, A. Carracedo ${ }^{\text {d }}$, M. Krawczak ${ }^{\text {e }}$, W.R. Mayr ${ }^{\text {f }}$, N. Morling ${ }^{\text {g }, ~ M . ~ P r i n z ~}{ }^{\text {h }}$, P.M. Schneider ${ }^{\text {', B.S. Weir }}{ }^{\text {j }}$ 'unrestricted combinatorial approach'	

\qquad

DNA commission of the International Society of Forensic Genetics:
\qquad indans on the interpretation of mixtures
P. Gill ${ }^{\text {a.* }}$, C.H. Brenner ${ }^{\text {b }}$, J.S. Buckleton ${ }^{\text {c }}$, A. Carracedo ${ }^{\text {d }}$, M. Krawczak ${ }^{\text {e }}$, W.R. Mayr ${ }^{\text {f }}$, \qquad

 \qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Four Alleles
Two Match the victim - $\mathrm{A}_{3} \mathrm{~A}_{4}$
Two Match the suspect - $\mathrm{A}_{1} \mathrm{~A}_{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Three Alleles
Victim is homozygote $-\mathrm{A}_{3} \mathrm{~A}_{3}$
Two Match the suspect $-\mathrm{A}_{1} \mathrm{~A}_{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
L R=P\left(E \mid H_{p}\right) / P\left(E \mid H_{d}\right)
$$

$1 / 2 p_{1} p_{2}$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Three Alleles
Victim is heterozygote $-\mathrm{A}_{2} \mathrm{~A}_{3}$
Suspect is homozygote- $\mathrm{A}_{1} \mathrm{~A}_{1}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Three possible genotypes \qquad can explain the evidence

Given that the victim is heterozygote $-\mathrm{A}_{2} \mathrm{~A}_{3}$

The possible genotypes to explain the evidence:
$A_{1} A_{1}, A_{1} A_{2}, A_{1} A_{3}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$L R=P\left(E \mid H_{p}\right) / P\left(E \mid H_{d}\right)$
$1 /\left(p_{1}{ }^{2}+2 p_{1} p_{2}+2 p_{1} p_{3}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evidence Victim Suspect				
H_{p}	H_{d}			
$\mathrm{A}_{1} \mathrm{~A}_{1}$	$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$\mathrm{~A}_{1} \mathrm{~A}_{1}$	1	$\mathrm{p}_{1}{ }^{2}$
$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{2}$	1	$\mathrm{p}_{1}{ }^{2}+2 \mathrm{p}_{1} \mathrm{p}_{2}+\mathrm{p}_{2}{ }^{2}$
$\mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{~A}_{1} \mathrm{~A}_{1}$	$\mathrm{~A}_{2} \mathrm{~A}_{2}$	1	$2 \mathrm{p}_{1} \mathrm{p}_{2}+\mathrm{p}_{2}{ }^{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Four Alleles
Two match the suspect $-\mathrm{A}_{1} \mathrm{~A}_{2}$
Two match the unknown $-\mathrm{A}_{3} \& \mathrm{~A}_{4}$
\qquad
\qquad
\qquad
Two match the suspect - $\mathrm{A}_{1} \mathrm{~A}_{2}$
\qquad
Two match the unknown - $\mathrm{A}_{3} \& \mathrm{~A}_{4}$
\qquad
\qquad
\qquad

H_{p}
Suspect is $A_{1} A_{2}$
Unknown is $A_{3} A_{4}$
$2 p_{3} p_{4}$

\qquad
\qquad
Suspect is $A_{1} A_{2}$
Unknown is $\mathrm{A}_{3} \mathrm{~A}_{4}$ $2 p_{3} p_{4}$

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{gathered}
L R=P\left(E \mid H_{p}\right) / P\left(E \mid H_{d}\right) \\
\frac{2 p_{3} p_{4}}{24 p_{1} p_{2} p_{3} p_{4}} \\
\frac{1}{12 p_{1} p_{2}}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

H_{p}
Suspect is $A_{1} A_{2}$
Unknown is $A_{3} A_{3}$
or $A_{1} A_{3}$ or $A_{2} A_{3}$
$p_{3}^{2}+2 p_{1} p_{3}+2 p_{2} p_{3}$

\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { or } A_{1} A_{3} \text { or } A_{2} A_{3} \\
& p_{3}^{2}+2 p_{1} p_{3}+2 p_{2} p_{3}
\end{aligned}
$$

	H_{d}	
$\underline{\text { Unk 1 }}$	$\underline{\text { Unk 2 }}$	
$A_{1} A_{2}$	$A_{1} A_{3}$	$2 p_{1} p_{2} \times 2 p_{1} p_{3}$
$A_{1} A_{2}$	$A_{2} A_{3}$	$2 p_{1} p_{2} \times 2 p_{2} p_{3}$
$A_{1} A_{2}$	$A_{3} A_{3}$	$2 p_{1} p_{2} \times p_{3}^{2}$
$A_{1} A_{3}$	$A_{1} A_{2}$	$2 p_{1} p_{3} \times 2 p_{1} p_{2}$
$A_{1} A_{3}$	$A_{2} A_{3}$	$2 p_{1} p_{3} \times 2 p_{2} p_{3}$
$A_{1} A_{3}$	$A_{2} A_{2}$	$2 p_{1} p_{3} \times p_{2}^{2}$
$A_{2} A_{3}$	$A_{1} A_{2}$	$2 p_{2} p_{3} \times 2 p_{1} p_{2}$
$A_{2} A_{3}$	$A_{1} A_{3}$	$2 p_{2} p_{3} \times 2 p_{1} p_{3}$
$A_{2} A_{3}$	$A_{1} A_{1}$	$2 p_{2} p_{3} \times p_{1}^{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$A_{1} A_{1}$	$A_{2} A_{3}$	$p_{3}^{2} \times 2 p_{2} p_{3}$
$A_{2} A_{2}$	$A_{1} A_{3}$	$p_{2}^{2} \times 2 p_{1} p_{3}$
$A_{3} A_{3}$	$A_{1} A_{2}$	$p_{3}^{2} \times 2 p_{1} p_{2}$

\qquad

$$
\begin{aligned}
L R & =P\left(E \mid H_{p}\right) / P\left(E \mid H_{d}\right) \\
& \frac{p_{3}^{2}+2 p_{1} p_{3}+2 p_{2} p_{3}}{12 p_{1} p_{2} p_{3}\left(p_{1}+p_{2}+p_{3}\right)} \\
& \frac{p_{3}+2 p_{1}+2 p_{2}}{12 p_{1} p_{2}\left(p_{1}+p_{2}+p_{3}\right)}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Number of Contributors
2 alleles - 2, 3, 4 contributors
3 alleles - 2, 3, 4 contributors
4 alleles - 2, 3, 4 contributors

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bayes formula (odds form): \qquad $\left(\frac{P\left(H_{1} \mid E\right)}{P\left(H_{2} \mid E\right)}\right)=\left(\frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}\right) \times\left(\frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}\right)$
\qquad
\qquad
posterior odds $=$ likelihood ratio \times prior odds \qquad
$E=$ DNA evidence
$H_{1}=$ hypothesis \#1; $\quad H_{2}=$ hypothesis \#2

