

Decisions about Changing Technologies

- · Cost to change
- · Comfort and experience levels
 - court approved methods must be used in forensic labs
- Capabilities...Enhancements
 - Are they really needed?
 - Will legacy data be impacted?

Where Is the Future Going for DNA Technology That Can Be Applied to Forensic DNA Typing?

Constant state of evolution (like computers)

- · Higher levels of multiplexes
- · More rapid DNA separations
- · Better data analysis software
- New DNA Markers

Validating new technologies will always be important in progressive forensic DNA labs...

Importance of Validation

Purpose of Validation

- Many forensic laboratories, in an effort to be cautious, are taking too long to perform their validation studies and thereby delaying initiation of casework and contributing to backlogs in labs that are already overburdened
- Technology will continue to advance and thus validation of new methodologies will always be important in forensic DNA laboratories

There will always be something to "validate"...

Questions to Keep in Mind...

- · Why is validation important?
- How does validation help with quality assurance within a laboratory?
- · What are the general goals of analytical validation?
- How is method validation performed in other fields such as the pharmaceutical industry?
- How do accuracy, precision, sensitivity, stability, reproducibility, and robustness impact measurements?

What is Validation and Why Should It Be Done?

- Part of overall quality assurance program in a laboratory
- We want the correct answer when collecting data...
 - We want analytical measurements made in one location to be consistent with those made elsewhere (without this guarantee there is no way that a national DNA database can be successful).
- If we fail to get a result from a sample, we want to have confidence that the sample contains no DNA rather than there might have been something wrong with the detection method...

Want no false negatives...

Why is Method Validation Necessary?

- It is an important element of quality control.
- Validation helps provide assurance that a measurement will be reliable.
- In some fields, validation of methods is a regulatory requirement.
- ...
- The validation of methods is good science.

Roper, P., et al. (2001) Applications of Reference Materials in Analytical Chemistry. Royal Society of Chemistry, Cambridge, UK, pp. 107-108.

Definition of Validation

- Validation is confirmation by examination and provision of objective evidence that the particular requirements for a specified intended use are fulfilled.
- Method validation is the process of establishing the performance characteristics and limitations of a method and the identification of the influences which may change these characteristics and to what extent. It is also the process of verifying that a method is fit for purpose, i.e., for use for solving a particular analytical problem.

EURACHEM Guide (1998) The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics; available at http://www.eurachem.ul.pt/guides/valid.pdf

More Validation Definitions

ISO 17025

5.4.5.1 Validation is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled

DAB Quality Assurance Standards for Forensic DNA Testing Laboratories

2 (ff) Validation is a process by which a procedure is evaluated to determine its efficacy and reliability for forensic casework analysis and includes:

To demonstrate that a method is suitable for its intended purpose...

Definitions

J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 389, 391

- Quality assurance (QA) planned or systematic actions necessary to provide adequate confidence that a product or service will satisfy given requirements for quality
- Quality control (QC) day-to-day operational techniques and activities used to fulfill requirements of quality
- Validation the process of demonstrating that a laboratory procedure is robust, reliable, and reproducible in the hands of the personnel performing the test in that laboratory

Definitions

J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 391

- Robust method successful results are obtained a high percentage of the time and few, if any, samples need to be repeated
- Reliable method the obtained results are accurate and correctly reflect the sample being tested
- **Reproducible method** the same or very similar results are obtained each time a sample is tested

General Levels of Validation

- Developmental Validation commonly performed by commercial manufacturer of a novel method or technology (more extensive than internal validation)
- Internal Validation performed by individual lab when new method is introduced
- Performance Checks can be performed with every run (set of samples)

Entry indext includes indext or indext or

	http://www.enfsi.eu/g	let_doc.php?uid=	630
Recommended M Aspects of the D	Ainimum Criter	ia for the V	alidation of Variou
DOCUMENT TYPE :	REF. CODE:	ISSUE NO:	ISSUE DATE:
	ENFSI DNA	001	November 2010

	Checks ar	nd Controls on DNA Results
Ľ	Community	FBI DNA Advisory Board's Quality Assurance Standards (also interlaboratory studies)
L	Laboratory	ASCLD/LAB Accreditation and Audits
L	Analyst	Proficiency Tests & Continuing Education
L	Method/Instrument	Validation of Performance
L		(along with traceable standard sample)
L	Protocol	Standard Operating Procedure is followed
l	Data Sets	Allelic ladders, positive and negative amplification controls, and reagent blanks are used
L	Individual Sample	Internal size standard present in every sample
	Interpretation of Result	Second review by qualified analyst/supervisor
ŧ	Court Presentation of Evidence	Defense attorneys and experts with power of discovery requests

Validation Philosophy

When is Validation Needed?

- · Before introduction of a new method into routine use
- Whenever the conditions change for which a method has been validated, e.g., instrument with different characteristics
- Whenever the method is changed, and the change is outside the original scope of the method

L. Huber (2001) Validation of Analytical Methods: Review and Strategy. Supplied by www.labcompliance.com

Some Purposes of Validation

- To accept an individual sample as a member of a population under study
- To admit samples to the measurement process
- To minimize later questions on sample authenticity
- To provide an opportunity for resampling when needed

Sample validation should be based on objective criteria to eliminate subjective decisions...

J.K. Taylor (1987) Quality Assurance of Chemical Measurements. Lewis Publishers: Chelsea, MI, p. 193

The VAM Principles

- 1. Analytical measurements should be made to satisfy an agreed requirement.
- Analytical measurements should be made using methods and equipment that have been tested to ensure they are fit for their purpose.
- 3. Staff making analytical measurements should be both qualified and competent to undertake the task.
- 4. There should be a regular and independent assessment of the technical performance of a laboratory.
- 5. Analytical measurements made in one location should be consistent with those made elsewhere.
- 6. Organizations making analytical measurements should have well defined quality control and quality assurance procedures.

Roper P et al. (2001) Applications of Reference Materials in Analytical Chemistry. Royal Society of Chemistry: Cambridge UK, p. 2

The Community Benefits from Training

- To better understand what validation entails and how it should be performed (why a particular data set is sufficient)
- Many labs already treat DNA as a "black box" and therefore simply want a "recipe" to follow
- People are currently driven by fear of auditors and courts rather than scientific reasoning
- Many different opinions exist and complete consensus is probably impossible

How do you validate a method?

- Decide on analytical requirements

 Sensitivity, resolution, precision, etc.
- · Plan a suite of experiments
- Carry out experiments
- Use data to assess fitness for purpose
- · Produce a statement of validation
 - Scope of the method

Roper, P., et al. (2001) Applications of Reference Materials in Analytical Chemistry. Royal Society of Chemistry, Cambridge, UK, pp. 108-109.

Assumptions When Performing Validation

- The equipment on which the work is being done is broadly suited to the application. It is clean, wellmaintained and within calibration.
- The staff carrying out the validation are competent in the type of work involved.
- There are no unusual fluctuations in laboratory conditions and there is no work being carried out in the immediate vicinity that is likely to cause interferences.
- The samples being used in the validation study are known to be sufficiently stable.

Roper, P., et al. (2001) Applications of Reference Materials in Analytical Chemistry. Royal Society of Chemistry, Cambridge, UK, pp. 110-111.

Tools of Method Validation

- · Standard samples
 - positive controls
 - NIST SRMs
- Blanks
- · Reference materials prepared in-house and spikes
- · Existing samples
- · Statistics
- Common sense

Roper, P., et al. (2001) Applications of Reference Materials in Analytical Chemistry. Royal Society of Chemistry, Cambridge, UK, p. 110.

Urban Legends of Validation... Butler, J.M. (2006) Profiles in DNA vol. 9(2), pp. 3-6

#1: HUNDREDS OR THOUSANDS OF SAMPLES ARE REQUIRED TO FULLY VALIDATE AN INSTRUMENT OR METHOD

- #2: VALIDATION IS UNIFORMLY PERFORMED THROUGHOUT THE COMMUNITY
- #3: EACH COMPONENT OF A DNA TEST OR PROCESS MUST BE VALIDATED SEPARATELY
- #4: VALIDATION SHOULD SEEK TO UNDERSTAND EVERYTHING THAT COULD POTENTIALLY GO WRONG WITH AN INSTRUMENT OR TECHNIQUE
- #5: LEARNING THE TECHNIQUE AND TRAINING OTHER ANALYSTS ARE PART OF VALIDATION
- #6: VALIDATION IS BORING AND SHOULD BE PERFORMED BY SUMMER INTERNS SINCE IT IS BENEATH THE DIGNITY OF A QUALIFIED ANALYST
- #7: DOCUMENTING VALIDATION IS DIFFICULT AND SHOULD BE EXTENSIVE
 #8: ONCE A VALIDATION STUDY IS COMPLETED YOU NEVER HAVE TO REVISIT IT

Validation Philosophy

Ask first: Does the new method improve your capability?

- Concordance are the same typing results obtained with the new technique as with an older one?
- Constant Monitoring check multiple allelic ladders in a batch against one another to confirm precision and consistent lab temperature
- Common Sense are replicate tests repeatable?

Student's t-Tests

"Student" (real name: W. S. Gossett [1876-1937]) developed statistical methods to solve problems stemming from his employment in a brewery.

Student's *t*-test deals with the problems associated with inference based on "small" samples: the calculated mean (X_{avg}) and standard deviation (σ) may by chance deviate from the "real" mean and standard deviation (i.e., **what you'd measure if you had many more data items: a** "large" sample).

http://www.physics.csbsju.edu/stats/t-test.html

A		e Frequ	Tables	Allele frequencies denoted with an asterisk (*) are below the 5/2N minimum allele threshold recommended by the National Research Council report (NRCII) The Evaluation of Forensic DNA Evidence published in 1996.	
D3S13	8 <mark>58</mark>	Caucasian N= 302	Caucasian N= 7,636		
Most	Allele 11 12 13 14 15	0.0017* 0.0017* 0.1027 0.2616	0.0009 0.0007 0.0031 0.1240	M	inimum Allele ⁻ requency = <mark>5</mark> /2N
allele	15.2 16 17 18 19 20	0.2533 0.2152 0.15232 0.01160 0.0017*	0.2430 0.2000 0.1460 0.0125 0.0001*	Want 5 c pro relia allel	to sample at least hromosomes to vide a somewhat ble estimate of an e's frequencyin a population

Validation in Other Fields (Besides Forensic DNA Testing)

Pharmaceutical Industry and FDA Follows ICH Validation Documents

- ICH (International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use)
 - http://www.ich.org

 - Q2A: Text on Validation of Analytical Procedures (1994)
 http://www.fda.gov/cder/guidance/ichq2a.pdf
 Q2B: Validation of Analytical Procedures : Methodology (1996)
 - http://www.fda.gov/cder/guidance/1320fnl.pdf
- From Q2B:
- "For the establishment of linearity, a minimum of five concentrations is recommended
- Repeatability should be assessed using (1) a minimum of 9 determinations covering the specified range for the procedure (e.g., 3 concentrations/3 replicates each); or (2) a minimum of 6 determinations at 100 percent of the test concentration."

Useful Resources on Validation

- Taylor JK. (1981) Quality assurance of chemical measurements. *Analytical Chemistry* 53(14): 1588A-1596A.
- Taylor JK. (1983) Validation of analytical methods. Analytical Chemistry 55(6): 600A-608A.
- Green JM. (1996) A practical guide to analytical method validation. Analytical Chemistry 68: 305A-309A.
- EURACHEM Guide (1998) The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics; available at http://www.eurachem.ul.pt/guides/valid.pdf

See also STRBase Validation Section: http://www.cstl.nist.gov/biotech/strbase/validation.htm

DNA Advisory Board Quality Assurance Standards

Section 2. Definitions

 (ff) Validation is a process by which a procedure is evaluated to determine its efficacy and reliability for forensic casework analysis (DNA analysis) and includes:

Manufacturer

- (1) Developmental validation is the acquisition of test data and determination of conditions and limitations of a new or novel DNA methodology for use on forensic samples;
- (2) Internal validation is an accumulation of test data within the laboratory to demonstrate that established methods and procedures perform as expected in the laboratory.

Forensic Lab

Overview of Developmental Validation Studies

- Developmental Validation: The developmental validation process may include the studies detailed below. Some studies may not be necessary for a particular method.
 - 2.1 Characterization of genetic markers
 - 2.2 Species specificity
 - 2.3 Sensitivity studies
 - 2.4 Stability studies
 - 2.5 Reproducibility
 - 2.6 Case-type samples
 - 2.7 Population studies
 - 2.8 Mixture studies
 - 2.9 Precision and accuracy
 - 2.10 PCR-based procedures

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

PowerPlex Y [Developmental Validation Experiments	
Study Completed (17 studies done)	Description of Samples Tested (performed in 7 labs and Promega)	# Run
Single Source (Concordance)	5 samples x 8 labs	40
Moture Ratio (male:female)	6 labs x 2 MF mixture series x 11 ratios (1:0,1:1,1:10,1:100,1:300,1:1000,0.5:300, 0.25:300,0.125:300, 0.0625:300, 0.03:300 ng MF)	132
Mixture Ratio (male:male)	6 labs x 2 MM mixtures series x 11 ratios (1:0, 19:1, 9:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:9, 1:19, 0:1)	132
Sensitivity	7 labs x 2 series x 6 amounts (1/0.5/0.25/0.125/0.06/0.03)	84
Non-Human	24 animals	24
NIST SRM	6 components of SRM 2395	6
Precision (ABI 3100 and ABI 377)	10 ladder replicates + 10 sample replicated + [8 ladders + 8 samples for 377]	36
Non-Probative Cases	65 cases with 102 samples	102
Stutter	412 males used	412
Peak Height Ratio	N/A (except for DYS385 but no studies were noted)	
Cycling Parameters	5 cycles (28/27/26/25/24) x 8 punch sizes x 2 samples	80
Annealing Temperature	5 labs x 5 temperatures (54/58/60/62/64) x 1 sample	25
Reaction volume	5 volumes (50/25/15/12.5/6.25) x [5 amounts + 5 concentrations]	50
Thermal cycler test	4 models (480/2400/9600/9700) x 1 sample + [3 models x 3 sets x 12 samples]	76
Male-specificity	2 females x 1 titration series (0-500 ng female DNA) x 5 amounts each	10
TaqGold polymerase titration	5 amounts (1.38/2.06/2.75/3.44/4.13 U) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Primer pair titration	5 amounts (0.5x/0.75x/1x/1.5x/2x) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Magnesium titration	5 amounts (1/1.25/1.5/1.75/2 mM Mg) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Krenke et al. (2005) Forensi	C Sci. Int. 148:1-14 TOTAL SAMPLES EXAMINED	1269

General Steps for Internal Validation

- · Review literature and learn the technique
- · Obtain equipment/reagents, if necessary Determine necessary validation studies (there can be overlap
- and you only need to run a total of 50 samples) · Collect/obtain samples, if necessary
- Perform validation studies maintaining all documentation
- . Summarize the studies and submit for approval to Technical Leader
- Write-up the analytical procedure(s). Include quality assurance (controls, standards, critical reagents and equipment) and data interpretation, as applicable
- Determine required training and design training module(s)
- Design qualifying or competency test

From Robyn Ragsdale (FDLE), Validation Workshop (Aug 24-26, 2005 at NFSTC) http://www.cstl.nist.gov/biotech/strbase/validation/validationworkshop.htm

¹ When conducting an internal validation, the SWGDAM Revised Validation Guidelines recommend running a total of at least 50 samples—mot 50 samples per experiment. (Debunking Some Urban Legends Surrounding Validation Within the Forenesis DNA Community by John Butler National Institute of Standards and Technology, Gaithersburg, Maryland, USA – Promega, Profiles in DNA, September 2006)

ENFSI Validation Guidelines (November 2010) http://www.enfsi.eu/get_doc.php?uid=630

Recommended Minimum Criteria for the Validation of Various

001

ISSUE NO:

ENFSI

POLICY

DOCUMENT TYPE :

Aspects of the DNA Profiling Process REF. CODE:

ENFSI DNA

WORKING GROUP

ISSUE DATE:

November 2010

ENFSI Validation Guidelines (November 2010)

Minimum parameters to be validated :

- Repeatability: 5 replicates of the same sample.
- Reproducibility: 5 replicates of the same sample (as in the repeatability test) amplified at another time by another person(--> if manually processed).

New STR Kits...

- Sensitivity (limit of detection) : a series of 5 dilutions tested in three replicates.
- Mixture analysis (not necessary if only reference samples are processed with this kit): a series of different laboratory defined mixture ratios should be tested in three replicates.
- Analysis of peak balance : check the peak balance of heterozygote alleles within a locus and of alleles between all loci. Acceptable peak balance ratios are > 60% for good quality samples.
- Check stutter ratios by calculating the ratio of the stutter peak height or area compared to the corresponding allele peak height or area. In general, stutter peaks have to be lower than the % of the allele peak height indicated by the manufacturer of the kit to be ignored as a biological artefact of the sample.
- Concordance study : a concordance study must be have been done using PCR products that have previously given full, balanced profiles.

Overview of Internal Validation Studies

- Internal Validation: The internal validation process should include the studies detailed below encompassing a total of at least 50 samples. Some studies may not be necessary due to the method itself.
 - 3.1 Known and nonprobative evidence samples
 - 3.2 Reproducibility and precision
 - 3.3 Match criteria
 - 3.4 Sensitivity and stochastic studies
 - 3.5 Mixture studies
 - 3.6 Contamination
 - 3.7 Qualifying test

SWGDAM Revised Validation Guidelines http://www.fbi.gov/hq/lab/fsc/backissu/july2004/standards/2004_03_standards02.htm

Design of Experiments Conducted for Validation Studies

- Before performing a set of experiments for validation, ask yourself:
 - What is the purpose of the study?
 - Do we already know the answer?
 - Can we write down how we know the answer?
- Think before you blindly perform a study which may have no relevance (e.g., extensive precision studies)
- Too often we do not differentiate learning, validation, and training

Points for Consideration

- Remove as many variables as possible in testing an aspect of a procedure
 - e.g., create bulk materials and then aliquot to multiple tubes rather than pipeting separate tubes individually during reproducibility studies
- Who can do (or should do) validation...
 - Outside contractor?
 - Summer intern?
 - Trainee?
 - Qualified DNA analyst

From a validation standpoint, having an outside group perform the validation studies on your instruments is legitimate, but valuable experience and knowledge are lost...

Steps Surrounding "Validation" in a Forensic Lab Effort to Bring a Procedure "On-Line" This is what takes the time... Installation – purchase of equipment, ordering supplies, setting up in lab

- Learning efforts made to understand technique and gain experience troubleshooting; can take place through direct experience in the lab or vicariously through the literature or hearing talks at meetings
- Validation of Analytical Procedure tests conducted in one's lab to verify range of reliability and reproducibility for procedure
- SOP Development creating interpretation guidelines based on lab experience
- QC of Materials performance check of newly received reagents
- Training passing information on to others in the lab
- Qualifying Test demonstrating knowledge of procedure enabling start of casework
- Proficiency Testing verifying that trained analysts are performing procedure properly over time

Analysis Software

- Currently under development at NIST by Dr. David Duewer
- Performs calculations for
 - Allele frequencies
 - Intralocus signal balance (heterozygotes)
 - Interlocus signal balance ('multiplex balance')
 - Stutter
- · Enables rapid analysis of internal validation data

	G D 21	1 X In 18 -	J 9 - C - S 5	- 21 21 1			Aria		- 1			
I Shape	window	- 11	4				- 10					
C1 -	14		- 6									
2	4 3	6	7	8	9	10	1 12	13	14 35 18 3			
		Datastation		Value			Locus	College.	04.4.6.000			
		Deedory	and Settings/bhil.P621102Wy	Documents the	scity/Walk	lation/Pk M	Amelogenin	3	4 2 0			
		Warkbook	20ptex_pk h	to and statter of	h		D10G1248	-5	664			
Clear		Tarts' worksheet		N HIS			01051435	- 6	10.6 4			
_							D12ATA53	11	12 7 3			
Fetch		Worksheet	5149.45	#Enroles	Rowfet	FowLet	D1451434	13	14 5 4			
		Callo	Cleared	10	2	17	01751301	15	10.4 4			
	Sort by	regis			-		D185853	19	20 6 3			
Check	Thurs		Presiden	#Sargles	Rewfield	FowLat	DIGATA113	21	22 5 4			
			Atlan	0			D1S1627	23	24.6 3			
AlleleFre	FigScatte		Asen				0151677	- 25	26 6 4			
_	_		Hep	0			D205482	29	30 4 4			
Mithin	Fightenin						D2251045	31	32 6 4			
within	- groom						D2S1776	33	34 6 4			
-		Rep_Alsorreg	Finished				025441	- 32	38 5 4			
Btw - Sum	FigBtw	Rep_DetweenGum	Finished				D354529	39	40 6 4			
		Rep_Betweeni.cc	Finished				D4S2364	-41	42 3 4			
Btw - Loc		Ex Souther	Second of Contract				D4S2408	43	44 4 4			
_		Fig Vithin	Started				D6S1017	47	45 5 4			
		Fig_Detween	Finished				D65474	49	50 5 4			
Print		Cole 2 Locate	Cheviland				D9G1122	- 61	52 5 4			
		Carrieges	Checked				CONTRACTOR		94.0 2			
Zoom												
					Sc	roor	e hot	of	progra	m		
· · · ·					30	eei	151101	UI.	progra	1111		
Exit			The coc	le and	110	or ir	torfa		aro om	hoddod	in ever	al
			THE COU		i us		licinal			ibedded	I III EXC	21
MasterList												
oad Calls		Status	LONG CONTRACTOR	N								
_		Warkbook	MasterList_NST ds									
		Date Loaded	4.4 June 00 13/34/33									

Program Data Input

- Tables are exported from GeneMapper Format:
 - Allele calls
 - Peak heights
- Data formatted in Excel
- · Data is read by the program

						24 44	Dete				ollo
2	TT III III Shapt	- Window					Dala	апрс	JL. AII	ele C	ans
	Sample	- Loci	JS 3	4	5	6	7	8	9	10	11
1	Sample Name	Amelogenin	Amelogenis	D1051248	D1051248	D1051435	D10S1435	D1154463	D1154463	D12ATA83	D12ATA6
2	1_a	×	Y	14	16	13	13	14	14	14	17
3	2_9	×	×	13	15	11	14	13	14	13	17
4	3_a	×	Y	13	16	13	14	14	15	12	15
5	4_8	×	Х	12	12	12	12	11	12	16	18
8	6_a	×	×	14	15	11	12	13	15	13	15
7	6_a	×	×	14	15	12	12	15	16	14	18
8	7_a	×	Y	13	14	12	12	13	14	18	17
9	8_a	×	X	11	15	11	13	13	16	14	15
10	9_3	×	Х	13	15	10	11	12	13	13	13
11	10_a	х	Y	12	15	12	13	12	14	13	18
	11_a	×	×	13	15	10	11	12	13	13	13
13	12_a	×	Y	12	15	12	13	12	14	13	18
14	1_b	Х	Y	14	16	13	13	14	14	14	17
15	2_b	х	×	13	15	11	14	13	14	13	17
18	3_b	Х	Y	13	16	13	14	14	15	12	15
	4_b	х	×	12	12	12	12	11	12	16	18
18	6_b	х	×	14	15	11	12	13	15	13	15
19	6 b	х	×	14	15	12	12	15	16	14	18
20	7_b	х	Y	13	14	12	12	13	14	16	17
21	8 b	×	×	11	15	11	13	13	16	14	15
22	9.b	х	X	13	15	10	11	12	13	13	13
23	10 b	х	Y	12	15	12	13	12	14	13	18
24	11 b	X	X	13	15	10	11	12	13	13	13
25	12 b	X	Y	12	15	12	13	12	14	13	18
28	1 c	X	Ý	14	16	13	13	14	14	14	17
27	2.6	X	X	13	15	11	14	13	14	13	17
28	3.0	X	Y	13	16	13	14	14	15	12	15
29	4 c	×	×	12	12	12	12	11	12	16	18
30	5 c	x	X	14	15	11	12	13	15	13	15
31	B.C.	X	X	14	15	12	12	15	16	14	18
32	7.0	×	Ŷ	13	14	12	12	13	14	18	17
33	8.0	X	×	11	15	11	13	13	16	14	15
34	8.0	×	Ŷ	13	15	10	11	12	13	13	13
35	10.0	X	Ŷ	12	15	12	13	12	14	13	18
38	11.0	X	×	12	15	10	11	12	12	13	13
	12.0	Ŷ	Ŷ	12	15	12	19	12	14	13	18
20	10.0			1.4	10	14		- 16		23	10

Image: Section 2016 Image: Section 2016 <thimage: 2016<="" section="" th=""> Image: Section 2016</thimage:>	1	Elle Elle Yew	(Insert Formal	t Book D	sta <u>Window</u> B	the Adderfor	•					
Sample Sample<		📽 🖬 🖪 🎒	3 3 7 1	1 8 2	2- 1 -	C - 1 😸 3	- 24		-			
Sample Call Locus 4 5 8 9 100 1 Impatture Ampath Call 1017340 101840	23	🛫 📱 i 📾 Sraat	🗃 Window				D	lata li	nput:	Peak	Hei	ghts
Binne Markov, Analysen, Analysen, O'UST, 201 Direct and Constant,	-	Sample	-A Loo	us –	4	6		7			10	
2 1.5 171 170 270 <th270< th=""> <th270< th=""> <th270< th=""></th270<></th270<></th270<>	1	Sample Name	Amelogenin	Ameloge	b D105124	D105124F	D1051435	D105143	D1154453	D1154483	DI2ATAE	DI2ATA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1.a	718	1065	429	608	3572	3572	2140	2140	1149	843
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2.0	3294	3294	2117	1723	3320	3279	1334	1053	2997	2054
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	3 a	2990	3728	2822	3274	3971	5228	1808	1759	4941	3885
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	4 a	1323	1323	1283	1283	1799	1799	412	335	666	647
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	5.a	4613	4513	2946	2099	3789	4347	1297	1061	3335	3076
5 3 310 340 110 220 110 110 110 220 220 110 110 110 220	7	6 a	6655	5555	5467	3627	8471	8471	2088	2290	4783	4267
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	7.a	3031	2548	3187	2522	6743	6743	1359	1516	3029	2744
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Ba	5580	5580	1534	1338	2545	1944	785	593	2524	1980
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	9.0	6093	5093	1934	1940	3676	3559	1151	1155	6567	6567
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10.9	1605	1445	925	776	1584	1315	528	993	1480	1262
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.8	3347	3347	1852	1014	3217	2534	837	522	4989	4968
	13	12 a	1425	1248	1099	0.05	2210	1909	463	432	1900	1465
	14	1.b	268	482	153	220	1293	1203	723	723	430	310
	16	2.5	992	002	561	469	000	076	227	222	795	680
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	3.5	817	330	719	842	1002	1308	460	455	1200	1023
		4.b	124	224	217	217	204	204	89	410	164	1020
	10	5.5	1202	1000	501	477	777	007	202	264	005	017
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	6.b	1892	1800	1008	648	2170	2170	267	200	910	701
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	7.5	1120	007	1250	990	2028	2626	498	6.18	1180	1054
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		R.b.	4002	4002	1235	1070	2047	1540	600	040	1000	1400
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8.5	2014	2014	1022	920	2010	1046	694	608	2680	0460
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	10.5	1620	1407	1012	967	1010	1410	600	403	1660	1200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	11 h	1504	1504	831	51B	1678	1268	321	260	2429	2429
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	12.b	902	798	787	714	1607	1361	331	307	1369	1048
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1.0	263	450	157	225	1900	1300	7.64	744	440	321
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2.0	1012	1012	596	470	904	905	254	202	822	603
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	3.0	751	960	683	709	970	1257	448	416	1228	068
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	4.0	229	229	226	228	200	200	- PRD	-10	112	112
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	5.0	1373	1273	500	220	040	721	282	241	0.01	709
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8.0	1748	1748	1062	668	2265	2265	303	434	030	001
Dir. Sime Sime <th< td=""><td></td><td>7.0</td><td>1101</td><td>1026</td><td>1279</td><td>1002</td><td>2734</td><td>2724</td><td>627</td><td>601</td><td>1107</td><td>1095</td></th<>		7.0	1101	1026	1279	1002	2734	2724	627	601	1107	1095
NI L ₂ 128 129 1109 1007 1212 2010 012 508 127 127 1201 50 11.2 156 1462 201 104 1108 140 202 148 129 217 100 11.2 1402 1402 701 470 1468 1108 200 208 2259 2251 2251 2251 2251 2251 2251 2261 308 352 2261 308 352 2261 308 352 2251 2251 2251 2251 2261 308 352 308 352 3261 308 352 3261 308 352 3261 <t< td=""><td>22</td><td>R.C.</td><td>2005</td><td>2006</td><td>1210</td><td>1062</td><td>1004</td><td>1400</td><td>602</td><td>440</td><td>1000</td><td>1430</td></t<>	22	R.C.	2005	2006	1210	1062	1004	1400	602	440	1000	1430
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	8.0	2120	2120	1099	1047	2122	2040	822	648	2276	9778
ee (122) (1402) (1402) (1402) (1402) (140)	25	10.0	1605	1407	001	047	1750	1425	6.00	200	1662	12/10
τ τι ₂ , τ ₁ , τ_1, τ_1, τ_1, τ_1, τ_1, τ_1, τ_1, τ_1	30	11.0	1422	1402	201	470	1/50	1100	200	240	2061	2261
eer ra_k uuri une reu uru 1962 1202 318 303 1287 993 30 30	27	12.0	901	010	740	672	1400	1362	200	240	1201	003
	20	14_5		010	140	313	1402	1202	310		-207	00.3

	10											

Finer De	Calc	ulat	ions					
			D1S1	656 St	tutter			
D22S1045	Stutte	r		Percen	ntages (E	ESI 17)	Stutter	
Percentages (ESX 17)	Stutter		Allele	Size	#	Median	
Allele Size	#	Median		11	224.6	39	5.1	
10 84.5	21	1.8		12	228.9	75	5.8	
11 874	134	3.0		13	232.9	55	6.4	
12 00 4	27	1 2		14	237.0	92	7.5	
12 90.4	57	4.2		15	241.0	92	9.1	
14 96.4	51	7.2		15.3	244.2	29	4.8	
15 99.4	165	8.9		16	245.2	90	9.1	
16 102.4	120	10.5		16.3	248.3	47	6.2	
17 105 5	105	14 7		17	249.2	31	12.3	
Aug	622	7.0		17.3	252.4	53	6.5	
Avg	1000	1.2		18.3	256.5	27	7.5	
SD	/	4.6			Avg	630	7.3	
	A	vg + 3SD		SD		2.2		
633 da	ta 了	21.0%				Av	q + 3SD	
points	5					1:	3.9%	

An Example Multiplex STR Assay Validation

- The NIST 26plex assay
- · Uses of the assay
- Internal Validation

 Experiments and Results

Work performed by Becky Hill and Pete Vallone (NIST)

More Loci are Useful in Situations Involving Relatives

- Missing Persons and Disaster Victim Identification (kinship analysis)
- Immigration Testing (often limited references)
 Recommendations for 25 STR loci
- Deficient Parentage Testing
 often needed if only one parent and child are tested

Relationship testing labs are being pushed to answer more difficult genetic questions

Additional loci were originally selected as candidates for miniSTR assays

- Certain CODIS and existing kit loci are not amenable to miniSTR assay design
 - Large allele range (FGA)
 - STR flanking region sequence that results in larger amplicons (D7S820 and D21S11)
- In 2004 2005 Dr. Mike Coble performed a survey of autosomal STRs to find candidate loci
- Heterozygosity > 0.7
- Moderate allele range (= low mutation rates)
- Tri & Tetra nucleotide repeat motifs
- Not linked to CODIS/kit loci
 - 26 candidates were selected and termed 'NC' for <u>non-C</u>ODIS/Core loci

Cottle, M.D. and Butler, J.M. (2006) Contractionation on the minin Terror Control Cost of Cost

NC Miniplexes NC01 NC02 NC03 NC04 D3S3053 D10S1248 D1S1677 D1GATA113 D14S1434 D2S441 D6S474 D2S1776 D22S1045 D4S2364 D20S482 D4S2408 NC08 NC06 NC07 NC05 D1S1627 D3S4529 D9S1112 D17S1301 D18S8534 D8S1115 D9S2157 D12ATA63 D20S1082 D9S324 D10S1430 D14S1280 NC09 NC10 4 Loci removed because they D3S3053 D10S2327 were problematic D6S474 D11S4463 30 - 4 = 26!!!D17S974 D20S482

26 New STR Loci for Human Identity Testing Initial miniSTR work • Small multiplex assays developed (10 miniplexes) • Intended for use on degraded samples • Sensitivity down to 100 pg (with 30 cycles) Utility of miniplexes • Degraded DNA • Low copy number analysis DUS NIST Standard Reference Materials • The 26 loci are certified for NIST SRM 2391b

http://www.cstl.nist.gov/strbase/training/Copenhagen2012-STR-Workshop.htm

Reference Multiplex

- · Goal: to type all 26 loci in a single reaction
- 65 to 400 base pair amplicons
- Majority of PCR primers redesigned – no longer miniSTRs
- D8S1115 was omitted from the final reference multiplex
- 26plex = 25 STRs + Amelogenin

Developmental Validation

- · Vary number of cycles during amplification
- Optimize annealing temperature
- Vary post PCR soak time (adenylation)
- Optimize primer pair concentration
- · Perform sensitivity study
- · Determine mutation rates
- Determine genotype concordance with data obtained from miniplex primer sets

http://www.cstl.nist.gov/biotech/strbase/pub_pres/Promega2007_NewSTRloci.pdf

Hill, C.R., Butler, J.M., and Vallone, P.M. (2009) A new 26plex assay for use in human identity testing. *J. Forensic Sci.* 54: 1008-1015

PCR Conditions

- Master Mix (final concentrations listed)
 - 2 mM MgCl₂
 - 1x PCR Buffer (supplied with Taq Gold)
 - 1 Unit TaqGold
 - ~0.2 µM Primer mix (varies by locus)
 - 250 mM dNTPs
 - 0.16 mg/mLBSA
- 20 µL reaction volume
 - target input DNA ~1 ng

Thermal Cycling Conditions

Conditions for GeneAmp 9700 (9600 emulation mode)

~3.5 hours

- 95°C Hot Start for 11 min
- 30 cycles
 - 94°C for 45 sec Denaturation
 - 59°C for 2 min Annealing
- 72°C for 1 min Elongation
 60°C soak for 60 min
- 60 C SOAK TOP
- 25°C hold

CE Conditions

- Amplification products were diluted in Hi-Di formamide and GS500-LIZ internal size standard
- Analyzed on the 16-capillary ABI Prism 3130xl Genetic Analyzer
- Prior to electrophoresis, a 5-dye matrix was established under the "G5 filter" with the five dyes of 6FAM, VIC, NED, PET, and LIZ.
- POP-6 polymer was utilized for separations on a 36 cm array
- Samples were injected electrokinetically for 10 sec at 3 kV
- + Fragments separated at 15 kV at a run temperature of 60 $^{\circ}\text{C}$
- Data analyzed using GeneMapperID v3.2
- Bins and panels for the multiplex are available on STRBase (http://www.cstl.nist.gov/biotech/strbase/str26plex.htm#Bins-and-Panels)

Example Use of the Assay

- Kinship Testing
- Samples were typed with Identifiler and the NIST assay
- Note: at the time of this analysis the assay was only a 23plex (22 STRs + Amelogenin)

Relationship Examined	15 STRs (Identifiler, ID15)	ID15 + 22 NC STRs = 37 loci (A37)
Mother/Child* (*with single mutation)	0.214	5,200,000 Extra loci help
Siblings	477	113,000 Extra loci help
Uncle/Nephew	824	247,000 Extra loci help
Cousins	0.45	2.25
Grandparents/ Grandchildren	0.53	1.42

Use of the 26plex in Your Lab?

Perform an Internal Validation

- Review the literature on the 26plex assay
- · Purchase primers
- TaqGold polymerase + buffers
- Prepare primer mix
 - Proper concentrations (follow paper)
 - Use a low salt tris buffer (dyes)
- Use the NIST SRM (9947A & 9948)

Revised Validation Guidelines Scientific Working Group on DNA Analysis Methods (SWGDAM)

 3. Internal Validation: The internal validation process should include the studies detailed below encompassing a total of at least 50 samples. Some studies may not be necessary due to the method itself.

We are using these guidelines as a starting point for designing our internal validation experiments

These should be modified as appropriate for specific laboratory requirements 3.2 Reproducionity and precision: The laboratory must document the reproducionity and precision of the procedure using an appropriate control(s). - Examination of sizing precision on identical lalleles

3.3 Match criteria: For procedures that entail separation of DNA molecules based on size, precision of sizing must be determined by repetitive analyses of appropriate samples to establish criteria for matching or allele designation. - Multiple injections and implementing sizing precision (bins and panels)

Forensic Science Communications July 2004 – Volume 6 – Number 3

Revised Validation Guidelines

Scientific Working Group on DNA Analysis Methods (SWGDAM)

- 3.4 Sensitivity and stochastic studies: The laboratory must conduct studies that ensure the reliability and integrity of results. For PCR-based assays, studies must address stochastic effects and sensitivity levels.
 Sensitivity study
- 3.5 Mixture studies: When appropriate, forensic casework laboratories must define and mimic the range of detectable mixture ratios, including detection of major and minor components. Studies should be conducted using samples that mimic those typically encountered in casework (e.g., postcoital vaginal swabs).
 Simple mixture study
- 3.6 Contamination: The laboratory must demonstrate that its procedures minimize contamination that would compromise the integrity of the results. A laboratory should employ appropriate controls and implement quality practices to assess contamination and demonstrate that its procedure minimizes contamination.
 Negative controls
- 3.7 Qualifying test: The method must be tested using a qualifying test. This may be accomplished through the use of proficiency test samples or types of samples that mimic those that the laboratory routinely analyzes. This qualifying test may be administered internally, externally, or collaboratively.
 Another analytic will and 2 samples (the NIST_SEM).

Forensic Science Communications July 2004 - Volume 6 - Number 3

Concordance Study

	Standa	rd DNA Te	mplate Ge	notypes			5	5RM 2391b	Component	8		
Locus	9947A	9948	ABI 007	K562	Genomic 1	Genomic 2	Genomic 3	Genomic 4	Genomic 5	Genomic 6	Genomic 7	Genomic
DIGATATIS	11,12	7,12	12,12	11,12	11,11	12,13	11,11	13,13	11,12	11,12	10,12	10,12
D151627	13,14	11,13	11,14	10,14	10,14	13,14	13,14	11,12	14,15	11,13	11,14	13,14
D1S1677 (NC02)	13,14	13,14	13,13	13,14	12,13	14,16	14,17	14,15	13,14	13,14	12,13	14,16
D25441 (NC02)	10,14	11,12	14,15	10,14	11,14	11,14	10,14	12,14	11,14	10,11	11,14	11,11.3
D251776	10,10	10,12	8,10	11,11	11,12	11,11	8,10	11,12	12,13	11,12	11,12	11,12
D353053	9,11	9,12	9,9	12,12	9,12	10,11	9,11	11,11	11,11	9,9	11,11	9,9
D354529	13,13	12,12	13,13	14,14	14,15	13,16	14,16	15,16	13,15	15,17	14,16	14,14
D452304 (NOU2)	9,10	9,10	9,10	9,9	9,9	9,10	9,10	9,9	9,10	8,9	9,9	9,9
D452400	9,10	10,10	10,11	10,11	10,10	9,9	8,9	9,10	10,11	9,9	8,11	11,11
D652500	14,23	14,1/	17,18	14,14	17,18	17,24	17,18	17,18	14,15	14,18	14,20	14,18
D05474	14,18	17,17	14,14	16,18	16,17	14,17	14,16	14,16	15,18	14,17	15,17	17,17
DOCIMIE	9,10	8,8	10,10	8,11	10,10	10,12	10,12	7,10	8,9	10,10	7,12	10,12
D001110	9,18	15,1/	15,17	16,16	16,16	16,16	16,17	9,17	9,16	9,16	9,18	15,16
D0001122	12,13	12,15	12,12	10,14,15	11,12	12,13	12,12	12,12	11,13	11,12	11,12	13,13
D952107	7,13	7,11	13,13	13,13	8,13	9,11	11,13	11,11	7,14	11,13	12,15	11,11
D1051246 (NC01)	13,15	12,15	12,15	12,12	14,15	13,15	13,16	12,12	14,15	14,15	13,14	11,15
D1051435	10,11	12,13	11,13	10,12	13,13	11,14	13,14	12,12	11,12	12,12	12,12	11,13
D1044403	12,13	12,14	14,14	13,14	14,14	13,14	14,15	11,12	13,15	15,16	13,14	13,16
D12A1A05	13,13	13,18	13,17	17,17	14,17	13,17	12,15	16,18	13,15	14,18	16,17	14,15
D 143 1434 (NC0 1)	7.10	13,14	11,14	10,10	13,14	11,13	14,15	10,11	13,14	13,14	10,14	13,13
D175874	7,10	10,11	9,10	0,0	9,11	9,10	9,9	1,9	11,12	9,9	11,11	
D1/31301	12,12	11,12	12,13	11,12		11,12	11,12	12,13	10,11		11,12	12,12
D103033	11,14	40.44	11,11	12,10	11,14	11,11	45.45	11,13	10,15	11,14	14,14	12,13
D203402	14,10	15,14	14,10	10,10	14,14	14,10	10,10	14,15	14,15	14,14	14,14	10,10
02031002	11,14	11,15	12,14	11,11	11,15	14,15	11,11	14,15	11,14	11,10	14,15	11,15

Previous Concordance Study

- Performed during developmental validation (~2007)
- 639 samples compared
- 14,058 total types (639 x 22 STR loci)
- 28 types discordant (0.20%)
- 99.80% concordance
- Discordance has not yet been confirmed by sequencing

http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm

Sensitivity Study

- Run 2 unique samples in triplicate
 - 1. 1 ng
 - 2. 0.5 ng
 - 3. 0.25 ng
 - 4. 0.125 ng
 - 5. 0.060 ng
- Sample concentration determined with Quantifiler prior to sensitivity study

Serial Dilution

- Prepare serial dilution to use 2 μL volume per PCR reaction
- Prepare 20 μL of each concentration point (enough volume to run triplicate experiments)
- Example for stock sample 4.5 ng/µL

ng in 2 uL	ng/uL	Stock conc	Vol to add (uL)	Water	Total Volume
1	0.5	4.5 ng/uL	2.2	17.8	20
500	0.25	0.5 ng/uL	10	10	20
250	0.125	0.25 ng/uL	10	10	20
125	0.0625	0.125 ng/uL	10	10	20
60	0.03	0.0625 ng/uL	9.6	10.4	20
		-			

Sensitivity Study Conclusions

- The 26plex assay provides full profiles down to 125 pg of pristine DNA template
- Partial profiles with > 20 loci are obtained down to 60 pg
- Remember: quality of sample will effect assay performance

http://www.cstl.nist.gov/strbase/training/Copenhagen2012-STR-Workshop.htm

С	ompai	ring Contr	ols to 9	:1 mixtures
Mix 0_1 [D2051082	MMP_1/plex_P0P4 [D65474 100	D12ATA63 D22S1846	D1051248	D1151677 D1154463 400
4000 0 11	. <u></u> 			A:B = 0:1
Mis-1.9	MMP_26plax_P0P6	TUPATACI DOPENDA	010112-02	DISIGN
	100 1.4			A:B = 1:9
The 9:1	mixture type as	"single source samples"	RFUS	D151617 D1154463
**************************************	- <u>4</u> - <u>4</u>		<u>лл</u> 13 14	A:B = 9:1 A:B = 9:1
Mix-1_0	MMP_Nplex_P0P4		0100100	DIFICUT DIFF.
	100 14 14		- 4 8	AB = 1:0

Mixture Study Conclusions

- The 26plex is capable of detecting a mixture ratio of 1:1 and 3:1
- At 9:1 the minor alleles are not called (detection threshold 50 RFUs)
- The assay is fit for our purposes running single source reference samples (but we should be able to detect a significant mixture)

Negative Controls

Negative Control					
NOT HAVE TOTAL					
BISSEE DESCRIPTION					

Qualifying Run

- Someone else (qualified person!) in the lab should run the assay on the same samples used in the validation experiments
 - Provided analyst with 26plex primer mix and assay protocol
- · 12 components of the NIST SRM 2391b
- 100% concordance was observed with previously called genotypes

• An example data table							
D1051248 D115463	11.1.1.0.11.1.1.0.00.0.0.						
Sample Allele Size'S Size'P Height'S Height P SP Ratio Sample Allele Size'S Size'P	Height S Height P S/P Ratio						
10 a 15 201.02 200.01 103 350 10.302 6_4 10 370.44 373.43	84 4064 7.017						
10_a 10 201.00 200.00 // //0 5.525 0_a 10 5/1.02 5/0.40 8 9 15 26140 265.42 127 126 656 1 9 14 267.61 271.48	169 2140 7.917						
6_a 10 20140 20043 127 1330 5300 1_a 14 30.01 37140 3 a 16 26542 28030 207 277 10 a 14 36785 27166	28 202 7.057						
11 a 15 26143 26546 00 1014 8976 8 a 13 2636 9770	54 765 7.059						
9 a 15 20140 20 40 161 1840 8 750 12 a 12 359 85 363 15	32 463 6.011						
2 a 10 201.44 200.40 101 1040 0.700 12_d 12 305.00 303.71 2 a 13 263.40 267.40 184 2117 8.602 6 a 13 263.757	87 1297 6 708						
2 a 15 26143 26544 143 1793 8 200 12 a 14 367.67 27160	28 432 6.491						
3 a 13 25355 25750 229 2822 8115 10 a 12 359.83 363.76	30 526 5703						
9 a 13 25346 25748 156 1934 8.066	35 320 3.703						
11 a 13 25346 25747 107 1652 6477							
12 a 12 249.60 253.57 65 1099 5.914							
10 a 12 249.61 253.63 53 925 5.730							
4 a 12 249.53 253.47 73 1283 5.690							
8 a 11 245.54 249.47 79 1534 5.150							
6_a 17 269.83 272.94 12 916 1.310							
avg 7.514	avg 7.324						
std 2.331919	std 1.249151						

Interlocus Balance

- · Signal intensity between loci
- Qualitatively described as 'balance' of the multiplex
- The cumulative signal is normalized to 1 and the fractional contribution of each locus is calculated

26plex Bins and Panels

- For Genemapper IDv3.2
- Written for POP4 and POP6
- We can provide the bins and panels on STRBase, but you must check them... – Use 9947A & 9948

http://www.cstl.nist.gov/biotech/strbase/str26plex.htm#Bins-and-Panels

Experiments Day 1

- 12 SRM components for Concordance
 - Samples set up in 8-strip tubes
 - After confirming that data is on scale and that the assay is successfully performing the concordance samples can be injected 2 more times (overnight) for Precision (allele sizing)

Experiments Day 2

- 2 samples are amplified in triplicate for sensitivity study
- The mixture study samples are amplified

Experiments Day 3

• A qualified analyst amplified the NIST SRM 2391b (12 components)

Data Analysis

The programs for data analysis are still under development, but the following information can be tabulated

- Stutter for each locus (and allele size)
- Heterozygote balance at each locus
- Interlocus balance (multiplex balance)
- Precision (sizing reproducibility)
- Concordance (allele drop out?)
- Sensitivity (down to 125 ng)
- Mixture (a 3:1 mixture can be detected)
- Qualifying run (concordance)

Conclusions

- The performance for this lot of 26plex primer mix has been characterized
- The same internal validation will be performed when a new lot of primer mix is prepared
 Compared to previous lot performance
- The validation took about 3 days
 - The software tools greatly speed up the data analysis process

71 amplification reactions 16 unique samples 8 injections on 3130

Example: PowerPlex 16

- Switch from ProfilerPlus/COfiler kits to PowerPlex 16
- Retaining same instrument platform of ABI 310

Recommendations:

- Concordance study (somewhat, but better to review literature to see impact across a larger number of samples and which loci would be expected to exhibit allele dropout-e.g., D5S818)
- · Stutter quantities, heterozygote peak height ratio
- · Some sensitivity studies and mixture ratios
- Do not need precision studies to evaluate instrument reproducibility

Example: ABI 3130

- Evaluation of a new ABI 3130 when a laboratory already has experience with ABI 310 $\,$
- STR kits used in lab will remain the same

Recommendations:

- · Precision studies to evaluate instrument reproducibility
- · Sensitivity studies
- Do not need new stutter, mixture ratio, peak height ratio, etc. (these relate to dynamics of the the kit used)

Instrument/Software Upgrades or Modifications

- What should be done to "validate" new upgrade?
 ABI 7000 to ABI 7500
 - ABI 3100 to ABI 3130xl
 - GeneScan/Genotyper to GeneMapperID
- Try to understand what is different with the new instrument or software program compared to the one you are currently using (e.g., ask other labs who may have made the switch)
- If possible, try to retain your current configuration for comparison purposes for the validation period

Run the same plate of samples on the original instrument/software and the new one

ABI 3130xl vs ABI 3100 What NIST did to "validate" a 3130xl upgrade

- Ran plates of samples on both instruments with same injection and separation parameters and compared results
 - Data Collection version 1.0.1 (3100) vs 3.0 (3130xl)
 - POP-6 (3100) vs POP-7 (3130xl)
 - 36 cm array (3100) vs 50 or 80 cm array (3130xl)
- Ran several plates of Identifiler samples and compared allele calls (noticed a sensitivity difference with equal injections and relative peak height differences between dye colors) – all obtained allele calls were concordant
- Ran a plate of Profiler Plus samples and compared sizing precision precision was not significantly different
- Also examined SNaPshot products and mtDNA sequencing data is the new instrument "fit for purpose"?
- Environmental conditions may change over time so original validation is no longer valid...

Suggestions for an Internal Validation of an STR Kit

- Standard samples (3.1) Between 1 and ~20 samples
 - Verify correct type with positive control or NIST SRM samples
 - Concordance study with 5-10 (non-probative casework) samples previously typed with other kit(s)
- Precision samples (3.2) 5-10 samples
 Run at least 5-10 samples (allelic ladder or positive control)
- Sensitivity samples (3.4) 14 samples
- Run at least 2 sets of samples covering the dynamic range
 5 ng down to 50 pg—e.g., 5, 2, 1, 0.5, 0.2, 0.1, 0.05 ng
- Mixture samples (3.5) 10 samples
 - Run at least 2 sets of samples
 - Examine 5 different ratios-e.g., 10:1, 3:1, 1:1, 1:3, 1:10

>50 samples

Additional Suggestions for Meeting the SWGDAM Revised Validation Guidelines

- Match Criteria (3.3)
 - As part of running a batch of samples (e.g., 10 or 96), run one allelic ladder at the beginning and one at the end
 - If all alleles are typed correctly in the second allelic ladder, then the match criteria (i.e., precision window of +/-0.5 bp) has likely been met across the entire size range and duration of the run
- Contamination Check (3.6)

 Run negative controls (samples containing water instead of DNA) with each batch of PCR products
- Qualifying Test (3.7)
 - Run proficiency test samples

Setting Thresholds

1. Preliminary Evaluation of Data

 An analytical threshold defines the minimum height requirement at and above which detected peaks can be reliably distinguished from background noise. Because the analytical threshold is based upon a distribution of noise values, it is expected that occasional, nonreproducible noise peaks may be detected above the analytical threshold.

1. Preliminary Evaluation of Data

• An analytical threshold should be sufficiently high to filter out noise peaks. Usage of an exceedingly high analytical threshold increases the risk of allelic data loss which is of potential exclusionary value.

Са	Calculations Using Negative Controls										
				Identifiler							
	Average RFU	Stdev	Min RFU	Max RFU	Method 1	Method 2	Method 3	Method 4			
Blue	9	3.3	2	22	19	19	44	42			
Green	13	3.6	5	27	24	23	54	49			
Yellow	20	4.9	8	31	35	34	62	69			
Red	27	7.1	10	50	49	48	100	99			
			ld	entifiler P	us						
	Average RFU	Stdev	Min RFU	Max RFU	Method 1	Method 2	Method 3	Method			
Blue	9	3.1	3	20	18	18	40	39			
Green	13	3.4	4	26	23	23	52	47			
Yellow	20	5.1	7	37	36	35	74	72			
Red	28	7.2	11	54	49	48	108	99			
lf	calculatir	ng anal	ytical th Identif	reshold iler: 100	using n RFU	egative	controls	8:			
lf	calculatir	ng anal	ytical th dentifile	reshold Plus: 1	using n 00 RFU	egative	controls	8:			

June	27-28,	2012
------	--------	------

				Identifiler						
	Average RFU	Stdev	Min RFU	Max RFU	Method 1	Method 2	Method 3	Method		
Blue	9	8.4	1	66	34	33	132	93		
Green	13	11.5	3	84	48	47	168	128		
Yellow	22	11.6	4	88	57	56	176	138		
Red	28	8.8	10	80	54	53	160	116		
			lde	entifiler Plu	us		1			
	Average RFU	Stdev	Min RFU	Max RFU	Method 1	Method 2	Method 3	Method 4		
Blue	10	4.6	3	68	23	23	136	55		
Green	16	5.6	3	78	33	32	156	72		
Yellow	24	7.9	7	63	48	47	126	103		
Red	31	8.9	7	81	57	56	162	120		
lf ca	If calculating analytical threshold using a DNA dilution series Identifiler: 140 RFU									

Sin	igle Analytical T	hreshold Summary
Ne	gative Controls	Positive Controls
Identifier	100 RFU	140 RFU
ldentifiler Plus	100 RFU	120 RFU

How to set an analytical threshold (AT)? Some Examples...

SWGDAM: Two times the intensity difference between the highest peak and lowest trough (as an example).
"The Ballpark": Three times the highest peak.
Gilder et al. (2007): Determined LOD by examining Pos, Neg, RB from 150 cases.

 $LOD=\mu_b+3\sigma_b$

TECHNICAL NOTE

Jason R. Gilder,¹ M.S.; Travis E. Doom,² Ph.D.; Keith Inman,³ M. Crim.; and Dan E. Krane,⁴ Ph.D.

Run-Specific Limits of Detection and Quantitation for STR-based DNA Testing J Forensic Sci, Jamuary 2007, Vol. 52, No. 1 doi:10.1111/j.1556-4029.2006.00318.x Available online at: www.blackwell-synergy.com

	Gi	lder e	et al. (2	2007)
TABLE 1—Maxim set of reagent bla	um, minimu nks, negativ from conti	n, and averag e controls, an rols in 50 diffi	e baseline levels o d positive control erent runs).	bserved in the ls (determined
	μь	$\sigma_{\rm b}$	$\mu_b + 3\sigma_b$	$\mu_b + 10\sigma_b$
Positive Control				
Maximum	6.7	6.9	27.4	75.7
Average	5.0	3.7	16.1	42.0
Minimum	3.7	2.4	10.9	27.7
Negative Control				> >
Maximum	13.4	13.2	53.0 M	145.4
Average	5.4	3.9	17.1	44.4
Minimum	4.0	2.6	11.8	30.0
Reagent Blank				
Maximum	6.5	11.0	39.5	116.5
Average	5.3	4.0	17.3	45.3
Minimum	4.0	2.6	11.8	30.0
All three controls	averaged			
Maximum	7.1	7.3	29.0	80.1
Average	5.2	3.9	16.9	44.2
	3.0	2.5	11.4	28.9

How to set an analytical threshold (AT)? Some Examples...

SWGDAM: Two times the intensity difference between the highest peak and lowest trough (as an example). "The Ballpark": Three times the highest peak.

- Gilder et al. (2007): Determined LOD by examining Pos, Neg,
- RB from 150 cases. Catherine Grgicak (Boston U.) presentation at the 2010 ISHI

(Promega) mixture workshop. (http://www.cstl.nist.gov/biotech/strbase/mixture.htm)

Ν	/lultiple me	thods for de	etermining <i>i</i>	AT
	Method	Origin	Analytical Threshold for green 5s injection example	
	1	Negatives	7	
	2	Negatives	4	
	3	Negatives	20	
	4	DNA Series	31	
	5	DNA Series	39	
DNA N Interpr	lixture etation	Cou Validation Studies for Mixter Interpretation	rtesy of Catherine Grgicak ure	168

• The Analytical Threshold is the "floor" of the EPG. Peaks below the AT are not to be trusted!

— AT

35_001_2005-05-03_11-56-48.fax	VICTIM (15765	Parel 5) Identifier v	1 100	05 <u>80</u>
2014 2	70 2	016\$639 78 28	2 268	294
2700- 1800- 800-)	$ \land \land$		
107 RFU	INCISTTR 272.21 21	12 16.20 138 1240.28 13478		
anot be called	I EVIDENCIE (15	823) Identifiar_v		
254 27	a 5	N 241	249	214
******		UL	Lab interp threshold =	retation 125 RFU
9 268.04 107	INOSTTR 11 272.15 59 78	6.19 12 280.25 475		
13 H01 2006-04-28 11-06-29 Has	SUSPECT (1\$7	23) [derofiler_v1	1	
254 27	0 27	1 212	 September 201 201 	294 294
·····				
1100	1	1		
t / \	/	-		

DN	ASEC	URITY	ŝ		Dist # 20425 Client Case # Page 5 of 10 512/2906	96-8352			TY	Dil # 1663 Climi Case # 06-8310 Page 8 of 10 \$122906		
include of D	NA metrologi							Cardenia See 1955 Aug	th I Turt Readby			
inderstan (D maaned at D Trick poolin handysin I -	NA gandline for a 22 percent percent of an analysis of the sec- standard	on orchiden er neten ef de die one erdenet is lindrate is mitd finde a mitd o SC [*] indicates di	dence speciments na. These of the tree and the small heath for mapped incident with a w it results for the	and suspent or reference spec- tic of basic spe- reference spec- what fragment local and both	Roman speciage commune contra summun is belief inners. Norschere er a fragment of charten and comp	nan belog antrolo meloool low ethi		A single manue and were situated from - expected fragment / protect that 599 tests A angle server adar descent sportage 2. A single server adar generation of forgation generation of forgations A minimum serverse	coul DNA profile and a single mome V- posizion (1973), the inference quarters of r fits autoeccul profile in the gamma two en- oral DNA profile was obtained from spe- Coyard Magaza. The expected tropost in a 1 in grant that SW withins DNA profile and autoeccut V-domesian	hromannen DRA portfa Danit Ivane, The di population in 1 in enem 19700; the y far this peellin in the e IDNA perfile was		
	A.(secural	STR Acutoin		I Y	Churnesover I	TR Australia		obtained from specie A miniker profile in	en 1982), DNA estimat from a Engertal advanted by the presence of readilyin (>3).	provided by the MCSEE NVA Begrowth at a locas.		
	Specinics 19723 Totarrest specifier, tam Carit Press	Specimen 19823 Chill Peer offer more fragment provides by	Specimen 19785 Antonne Aptender Cryster Hergen		Spectrees 15723 Antennas Sectors for Device any	Speckson 18823 INA fue artis store legenal prodector		 The probability of en DNA penaltic in great this miniare profile. 	er for mixture otherwood ded as a constributor to			
Less		96,600		Locat		40380		 A start of all pool works in a dephase 	4a V-chromosome profiles within the rate of 3.541 specifies frond 14 reaction. David	e nástane V-chrososome DNA David Drane cisper be INA profile.		
And	2.5	R H H		- Indelle	1 11	13, 9, 17		endaded as a scentifi	ntor to the mixture Y also mouse DNA			
	11.9	22.22.82			-	17. 61. 18						
212511	82,812	82	26.96.2	1.1	- 14			Suspect	Evidence	Victim		
17582	11,31	0.001.0	1.12	11/20199	22	1000	-					
CIVING	13, 52		95.18	24145	-			1.00				
DURCHAR	14.98	HO.H	8.9	2010		D138	S317	10, 11	[10], 11	11		
241	4,03	96.7.8.6.83		CALORY.	0,9				10			
anader.	1.4	10.0		Dillos .	1	DIR	0532	9 11	9 10 11 12	11 12		
10000	1.11	A diffe		797570	0	0100	2003	3,11	1. 10, 11, 16	14, 16		
	18, 18, 2	12.4 (10.10.1	13.2.19	070407		1				1 000000		
(00	17.18	10.10.17.18	8.7	013206		D2S	1338	23, 25	INC	19, 22		
1206	1	8.0.11	0.01	100000	14	10.11.02						
grasse.	13.34	892	15.18	015407	18	4.4.4		11				
Distant #	15.10	18, 11, 12, 12	1.12	010408	9	16,11,16		11				
		28	2.3	012448			10	11				

Setting Thresholds

Detection (analytical) threshold

- Dependent on instrument sensitivity what is a peak?
 ~50 RFU
- Impacted by instrument baseline noise

Dropout (stochastic) threshold

- Dependent on biological sensitivity ~150-200 RFU
- what is reliable PCR data?
- Impacted by assay and injection parameters

Validation studies should be performed in each laboratory

Determining the Dropout (Stochastic) Threshold

Gill et al. (2008) FSI Genetics 2(1): 76-82

 The dropout threshold can be determined experimentally for a given analytical technique from a series of pre-PCR dilutions of extracts of known genotype technique (it will probably vary between analytical methods). These samples can be used to determine the point where allelic dropout of a heterozygote is observed relative to the size of the survivor companion allele. The threshold is the maximum size of the companion allele observed. This is also the point where Pr(D) approaches zero...

Dropout threshold will change depending on instrument and assay conditions (e.g., longer CE injection will raise dropout threshold)

_		

				Provencia Parla		Constant	(2020) 222	226					
	FOREISK SUPERICE INFERMITURAL GENERALS 3 (2009) 222-220												
-24722333	362			Content	s lists availa	ible at Scie	nceDirect			25	FSI		
8-41			F								GENETICS		
	8		rorens	ic scie	nce mi	ematic	Jildi. G	enetics			-		
EI SEVI	ED		iourna	al homen	age: www	elsevier	com/loca	te/fsia					
DIMENT	LIN		1								anangan kacamatan in		
Estimating the probability of allelic drop-out of STP alleles in forensic genetics													
Louina	Estimating the probability of allelic drop-out of STR alleles in forensic genetics												
Torben 1	lvedebrii	1k ^{a,*} , Pou	il Svante	Eriksen	^{a,1} , Helle	Smidt N	Aogensei	n ^{b,2} , Niel	s Morlin	g ^{b,3}			
* Department of	of Mathematica	l Sciences, Aalb	org University, Exemptic Mad	Fredrik Bajers	Vej 7G, DK-92 f Health Scienc	20 Aalborg Ea	st, Denmark of Corenhamm	Feedrik V.c. Ve	11.08.2100	Conenharen E-	xt Denmark		
Section of For	tenne ornettes,	Department of	Torendik meta	cine, racuity o	, mann scienc	es, onirenary	of copeningen	, mank r s re	y 11, DR-2100	coprinigen es	or, Denmark		
Table 3 Mean peak	heights (rfu) fo	or various drop	-out probabilit	ies for 10 STR	loci.								
$P(D \hat{H})$	D3	vWA	D16	D2	D8	D21	D18	D19	THO	FGA	Overall		
0.0001	556	577	622	562	558	461	531	722	723	692	648		
0.0005	384	399	430	388	385	318	367	499	499	478	439		
0.0010	327	340	300	331	328	2/1	313	425	420	407	3/1		
0.0050	192	200	235	194	193	159	184	255	254	201	212		
0.0500	132	137	147	133	132	109	126	171	171	164	142		
		116	124	112	111	92	106	144	144	138	110		
0.1000	111	115								1.20	112		
0.1000	92	95	103	93	92	76	88	119	120	114	98		
0.1000 0.2000 0.3000	92	95	103	93 82	92 81	76	88 78	119 105	120 106	114	98		
0.1000 0.2000 0.3000 0.4000	92 81 73	95 84 76	103 91 82	93 82 74	92 81 74	76 67 61	88 78 70	119 105 95	120 106 95	114 101 91	98 86 77		
0.1000 0.2000 0.3000 0.4000 0.5000	92 81 73 67	95 84 76 69	103 91 82 75	93 82 74 68	92 81 74 67	76 67 61 55	88 78 70 64	119 105 95 87	120 106 95 87	114 101 91 83	98 86 77 70		
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000	92 81 73 67 61	95 84 76 69 63	103 91 82 75 68	93 82 74 68 62	92 81 74 67 61	76 67 61 55 50	88 78 70 64 58	119 105 95 87 79	120 106 95 87 79	114 101 91 83 76	98 86 77 70 63		
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000	92 81 73 67 61 55	95 84 76 69 63 57	103 91 82 75 68 62	93 82 74 68 62 56	92 81 74 67 61 55	76 67 61 55 50 46	88 78 70 64 58 53	119 105 95 87 79 71	120 106 95 87 79 71	114 101 91 83 76 68	98 86 77 70 63 57		
0.1000 0.2000 0.2000 0.4000 0.5000 0.5000 0.6000 0.7000 0.8000	92 81 73 67 61 55 49	95 84 76 69 63 57 50	103 91 82 75 68 62 54	93 82 74 68 62 56 49	92 81 74 67 61 55 49	76 67 61 55 50 46 40	88 70 64 58 53 46	119 105 95 87 79 71 63	120 106 95 87 79 71 63	114 101 91 83 76 68 60	98 86 77 70 63 57 50		
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000	92 81 73 67 61 55 49 40	95 84 76 69 63 57 50 42	103 91 82 75 68 62 54 45	93 82 74 68 62 56 49 41	92 81 74 67 61 55 49 40	76 67 61 55 50 46 40 33	88 70 64 58 53 46 39	119 105 95 87 79 71 63 52	120 106 95 87 79 71 63 52	114 101 91 83 76 68 60 50	98 86 77 70 63 57 50 41		
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.9900	92 81 73 67 61 55 49 40 34	95 95 69 63 57 50 42 35	103 91 82 75 68 62 54 45 38	93 82 74 68 62 56 49 41 34	92 81 74 67 61 55 49 40 34	76 67 61 55 50 46 40 33 28	88 78 70 64 58 53 46 39 32	119 105 95 87 79 71 63 52 44	120 106 95 87 79 71 63 52 44	114 101 91 83 76 68 60 50 42	98 86 77 70 63 57 50 41 34		

How to Determine the Stochastic Threshold

- Examine intensity and peak height ratio of 5 samples at three different low concentrations (e.g., 60, 75, and 125 pg)
- Observe variation in peak height ratio and peak intensity
- The stochastic threshold is the point at which this variation begins a rapid increase (change in slope of line relating std dev vs concentration)
- This can also be defined as the concentration at which a set percentage of peak height ratio values fall below 60%

Alternative Procedure (Mass State Police)

1. Since most estimates for LCN show up from 100-250 pg DNA, select a low level sample - say 150 pg as your stochastic limit.

2. Amplify 2 or more samples at a range of concentrations (1.0-0.005) ng multiple times and score the intensity

3. The stochastic limit is the intensity (RFUs) at which half the alleles have intensity above this value and half are below

4. In this way you define straddle data as at the point 50% of your alleles will be above this mark

Documentation of Internal Validation Studies

What is the best way to do this? Standardized format?

Who needs to review?

Who needs to approve?

Should it be presented or published?

From Robyn Ragsdale (FDLE), Validation Workshop (Aug 24-26, 2005 at NFSTC) http://www.cstl.nist.gov/biotech/strbase/validation/validationworkshop.htm

Appropriate Documentation...

- · Publications in the Peer-Reviewed Literature
 - See provided reference list
 - http://www.cstl.nist.gov/biotech/strbase/validation.htm
- In terms of documentation, is the community doing too much? Too little?
 - Benefit of STRBase Validation website
- Should we be requesting more information from the manufacturers of commercial kits in terms of developmental validation studies?

Validation Section of the DNA Advisory Board Standards issued July 1998 (and April 1999); published in *Forensic Sci. Comm.* July 2000

STANDARD 8.1 The laboratory shall use validated methods and procedures for forensic casework analyses (*DNA analyses*).

8.1.1 Developmental validation that is conducted shall be appropriately documented.

8.1.3 Internal validation shall be performed and documented by the laboratory.

Why is Documentation of Validation Important?

9. Documentation of Validated Methods

9.1 Once the validation process is complete it is important to document the procedures so that the method can be clearly and unambiguously implemented. There are a number of reasons for this. The various assessments of the method made during the validation process assume that, in use, the method will be used in the same way each time. If it is not, then the actual performance of the method will not correspond to the performance predicted by the validation data. Thus the documentation must limit the scope for introducing accidental variation to the method. In addition, proper documentation is necessary for auditing and evaluation purposes and may also be required for contractual or regulatory purposes.

9.2 Appropriate documentation of the method will help to ensure that application of the method from one occasion to the next is consistent.

EURACHEM Guide (1998) The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, p. 37; available at http://www.eurachem.ul.pt/guides/valid.pdf

Add	Validat http://www.	tior cstl.	n Home nist.gov/b	page on STRBase	tm .				
۲	Validation Information to Aid Forensic DNA Laboratories								
(<u>P</u>	E Validation Summary Sheets								
72	We are initiating an effort to catalo literature. The purpose of this effort tested, and the number of samples efforts by forensic DNA laboratorie		Address (1) http://www.cst.rizt.go PowerPlex Y Validation	lidation studies that have been published in the dotted (many) willing the service of the What validated?	× 🖸				
LE	SWGDAM Revised Validation documented and summarized."	ion Gui ed."	Reference: Krenke et al (2005) Study Completed Bingle Bource (Concordance)	Foremask: Bicl. Int. 1480(3):1-14 Where published? Description of Samples Tested Institution of Links and Promesal 5 samples x8 labs 5 s	<u># Ban</u> 40				
	Below is listed a compilation of re STR kits, in-house assays, instrum full reference bibliography is listed		Midure Ratio (male female) Midure Ratio (male male) Sensitivity Non-Human NIST SRM	0.25.30(0),123.300,0052300,02.300,02.300,00,47) 6.186s 2.4 Min Maters series 11.1748(c) (10,181,81,81,81,21,1;1,1,2,1,5,10,1:19,01) 7.186s x 2.series x 6 amounts (10,540.250,1250,060,03) 24.armais 6.components of 6FM 2295	132 132 84 24 6				
	Kit, Assay, or Instrument	Refer	Precision (ABI 31 00 and ABI 377) Non-Probative Cases Stuffer	10 ladder replicates + 10 sample replicated + (8 ladders + 8 samples for 377) 65 cases with 102 samples 412 males used How?	36 102 412				
	PowerPlex Y Profiler Plus	Krenk Frank	Cycling Parameters Annealing Temperature Reaction volume Thermal cycler test	Net (Receipt for U = 2007/16/2014) of the induces when indexing 5 voltes (BS/27/16/2014) is 8 punch is state x 2 amplies 5 lable x 5 temperatures (54/05/16/16/16/16/16/16/16/16/16/16/16/16/16/	80 25 50 76				
	Cofiler	Pawlo LaFoi et al.	Male-specificity TaqGold polymerase Stration Primer pair Stration Magnesium Stration	2 females x 1 thaties earlies (8-50 n g timale DNA) x 5 encounts 5 encounts (1.302.06/2.753/34/41.3 U) x 4 quantities (10.50.250.13 ng DNA) 5 encounts (0.307.551/31/36/2) x 4 quantities (10.502.250.13 ng DNA) 5 encounts (11/.25/1.51/.75/2 mM Mg) x 4 quantities (10.5/8.250.13 ng DNA)	10 20 20 20				
	AmpFISTR Blue AmpFISTR Green I	Wallin Holt e	Comments: Oth	TOTAL SAMPLES EXAMINE er information and conclusions	ED 1269				

Validation Summary Sheet for PowerPlex Y						
Study Completed (17 studies done)	Description of Samples Tested (performed in 7 labs and Promega)	# Run				
Single Source (Concordance)	5 samples x 8 labs	40				
Mixture Ratio (male:female)	6 labs x 2 WF mixture series x 11 ratios (1:0,1:1,1:10,1:100,1:300,1:1000,0.5:300, 0.25:300,0.125:300, 0.0625:300, 0.03:300 ng MF)	132				
Mixture Ratio (male:male)	6 labs x 2 MM mixtures series x 11 ratios (1:0, 19:1, 9:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:9, 1:19, 0:1)	132				
Sensitivity	7 labs x 2 series x 6 amounts (1/0.5/0.25/0.125/0.06/0.03)	84				
Non-Human	24 animals	24				
NIST SRM	6 components of SRM 2395	6				
Precision (ABI 3100 and ABI 377)	10 ladder replicates + 10 sample replicated + [8 ladders + 8 samples for 377]	36				
Non-Probative Cases	65 cases with 102 samples	102				
Stutter	412 males used	412				
Peak Height Ratio	N/A (except for DYS385 but no studies were noted)					
Cycling Parameters	5 cycles (28/27/26/25/24) x 8 punch sizes x 2 samples	80				
Annealing Temperature	5 labs x 5 temperatures (54/58/60/62/64) x 1 sample	25				
Reaction volume	5 volumes (50/25/15/12.5/6.25) x [5 amounts + 5 concentrations]	50				
Thermal cycler test	4 models (480/2400/9600/9700) x 1 sample + [3 models x 3 sets x 12 samples]	76				
Male-specificity	2 females x 1 titration series (0-500 ng female DNA) x 5 amounts each	10				
TaqGold polymerase titration	5 amounts (1.38/2.06/2.75/3.44/4.13 U) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20				
Primer pair titration	5 amounts (0.5x/0.75x/1x/1.5x/2x) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20				
Magnesium titration	5 amounts (1/1.25/1.5/1.75/2 mM Mg) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20				
Krenke et al. (2005) Forensi	c Sci. Int. 148:1-14 TOTAL SAMPLES EXAMINED	1269				

Implementation of the Newly Validated Procedure

Ok, the validation studies are complete and approved, the procedure is written and approved and the lab is ready to implement the new procedure into casework.

So, what about training?

Who needs to be trained and what is the extent of the training? How is the training documented? What constitutes completion of training? Per individual or per lab?

From Robyn Ragsdale (FDLE), Validation Workshop (Aug 24-26, 2005 at NFSTC) http://www.cstl.nist.gov/biotech/strbase/validation/validationworkshop.htm

٦				

