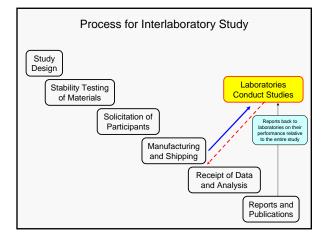
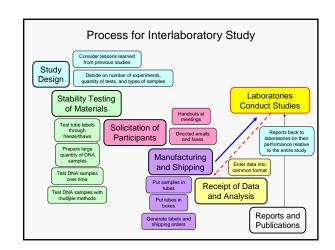
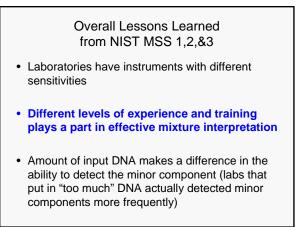

Interlaboratory Studies


- Purpose...
 - Not a proficiency test
 - Most labs see them as opportunity to anonymously directly compare themselves to others
- STRBase section on interlab studies
 http://www.cstl.nist.gov/biotech/strbase/interlab.htm


A High Degree of Variability Currently Exists with Mixture Interpretation

- "If you show 10 colleagues a mixture, you will probably end up with 10 different answers"
 – Peter Gill, Human Identification E-Symposium, April 14, 2005
- Interlaboratory studies help to better understand why variability may exist between laboratories
- Most analysts are only concerned about their own lab protocols and do not get an opportunity to see the big picture from the entire community that can be provided by a well-run interlaboratory study



NIST Initia	ted In # Labs	terlaboratory Studies
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. J. Forensic Sci. 42: 897-906
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JW, Newall PJ, Reeder DJ, (2001) NIST Mixed Stain Studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. J. Forensis CS: 46: 1199-1210
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. <i>Anal. Chem.</i> 75: 2463-2469. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study #3: signal intensity balance in commercial short tandem repeat multiplexes, <i>Anal. Chem.</i> 76: 6928-6934.
DNA Quantitation Study (Jan-Mar 2004) QS04	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, <i>J. Forensic Sci.</i> 50(3):571-578
Mixture Interpretation Study (Jan - Aug 2005) MIX05	69	Several presentations made Poster at 2005 Promega meeting (Sept 2005); available on STRBase

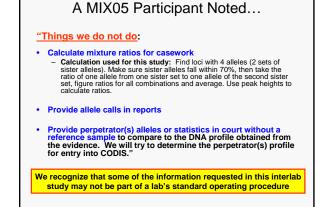
NIST MIX05 Summary

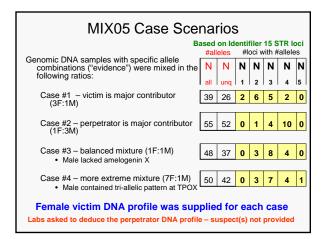
Purpose of MIX05 Study

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- One of the primary benefits we hope to gain from this study is recommendations for a more uniform approach to mixture interpretation and training tools to help educate the community

MIX05 Study Design and Purpose

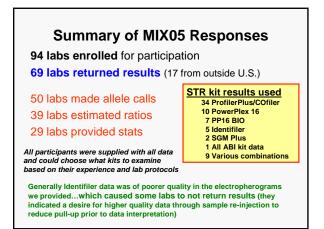
- Interlab studies provide a "big picture" view of the community
- Permit a large number of forensic practioners to
 evaluate the same mixture data
- Provide multiple cases representing a range of mixture scenarios
- Generate data from multiple STR kits on the same mixture samples to compare performance for detecting minor components
- The primary variable should be the laboratory's interpretation guidelines rather than the DNA extraction, PCR amplification, and STR typing instrument sensitivity
- Are there best practices in the field that can be advocated to others?

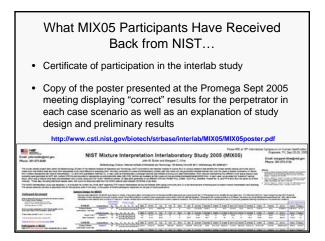


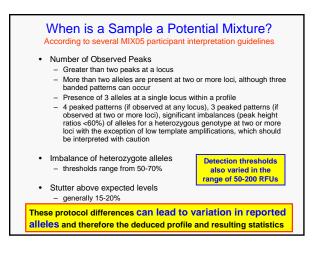

Requests for Participants in MIX05

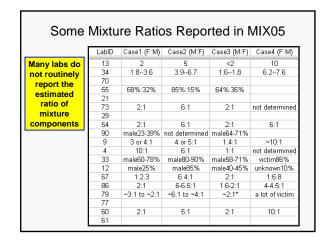

Mixtures representing four different case scenarios have been generated at NIST with multiple STR kits and provided to laboratories as electropherograms.

We would like to receive the following information:

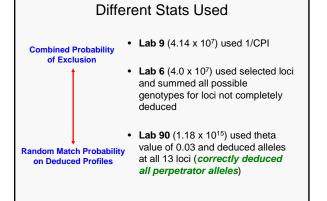

- 1) Report the results as though they were from a real case including whether a statistical value would be attached to the results. Please summarize the perpetrator(s) alleles in each "case" as they might be presented in court—along with an appropriate statistic (if warranted by your laboratory standard operating procedure) and the source of the allele frequencies used to make the calculation. Please indicate which kit(s) were used to solve each case.
- 2) Estimate the ratio for samples present in the evidence mixture and how this estimate was determined.
- Provide a copy of your laboratory mixture interpretation guidelines and a brief explanation as to why conclusions were reached in each scenario

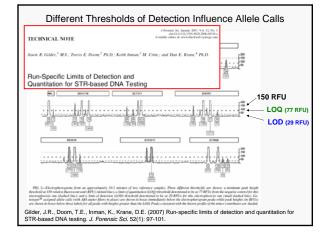


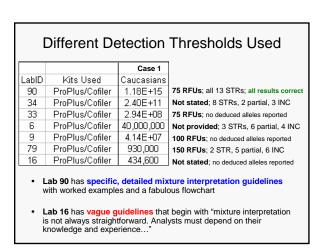



	X05 Results on Multi stl.nist.gov/biotech/strbase/i	•
	Case 1 evidence (mixture)	
Profiler Plus	المتناصلية المتنابية	ABI 3100 Generated Data was supplied on CD-ROM to labs as
COfiler	1 L	either .fsa files (for Genotyper NT or GeneMapperID) or Mac-converted files
Identifiler	يتشيه المتناهير	for Genotyper Mac
PowerPlex 16	المتعلما المستعلمات	м
SGM Plus	Inconstant de la constant de la const	
	FMBIO data was also	made available upon request

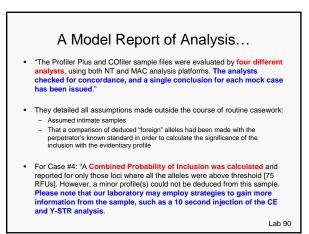
Cas	e #2 has p	ornoti	rato	r as	ma	ior co	mnoi	ont :	and t	hus is	the	oasio	st tr	n sal	ve
ASE #2		0351358		EGA	AMEL	0851179				0135317		D165539			CSE1P
ve Perp	2779019	15,15	15,15	20,24	XY	11,13	28,32.2		8,13	12,14	8,10	10,11	7,9.3		7,10
LabID	Kit Used		-									-	-		
16	ProPlus/Coffer	-					-				-			-	
6	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7,9.3	9.10	7.10
91	SGM Plus	15	15	20,24	XY	11,13	28.32.2	17,18				10,11	7,9.3		
46	PP16				100										
37	ProPlus/Coffer	-	15	20	XY	13	28.32.2	17.18	8,13	12,14	8,10	10.11	7,9.3	9.10	7,10
2	PP16	15	15.15	20.24	XY	11.13	28.32.2	17.18	8.13	INC	8,10	10.11	7.9.3	9.10	7,10
13	PP16 & Identifiler	15	15	20.24		11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
34	ProPlus/Coffer	15	15	20,24		11,13	28.32.2	17,18	8,13	12.14	8,10	10,11	7,9.3	9,10	7,10
70	Identifiler	15	15	20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8.10	10.11	7.9.3	9.10	7,10
55	ProPlus/Cofiler	15	15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
21	ProPlus/Cofiler	15.15	15,15	20,24	X,Y	11,13	28.32.2	17,18	8,13	12.14	8,10	10,11	7,9.3	9,10	7,10
73	ProPlus/Coffer	15.15	15.15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
29	Identifiler	15	15	20,24	XY	11,13	28.32.2	17,18	8,13	12.14	8,10	10,11	7,9.3	9,10	7,10
54	All Kits	15.15	15.15	20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8,10	10.11	7.9.3	9.10	7,10
90	ProPlus/Cofiler	15	15	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
9	ProPlus/Cofiler	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
4	ProPlus/Cofiler	15	15	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
33	ProPlus/Cofiler						-		-		-			-	
12	ProPlus/Cofiler	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
67	PP16	15	15,16	20,24	XY	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
86	ProPlus/Cofiler	15,15	15,15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
79	ProPlus/Cofiler	15,15	15,15	20,24		11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
77	Identifiler	-				-	-		-		-		-	-	
60	PP16	15	15	20,24	X,Y	11,13	28,32.2	17,18	8,13	12,14	8,10	10,11	7,9.3	9,10	7,10
61	Identifiler						-		-		-			-	

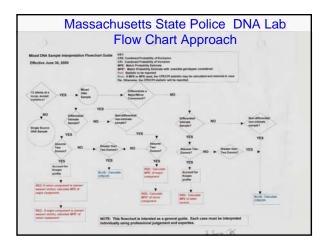


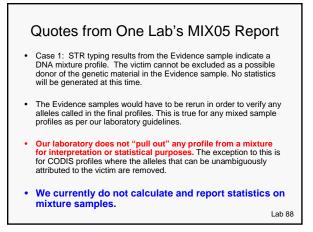

S	ome Repor	ted Stats	for MIX05 Ca	ase #1
	Many of the 29 l	abs providing st	atistics used PopSt	ats 5.7
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
77	Identifiler	PE calculated	PE calculated	PE calculated
73	ProPlus/Cofiler	none provided	none provided	none provided
4	ProPlus/Cofiler	none provided	none provided	none provided
12	ProPlus/Cofiler	none provided	none provided	none provided
29	Identifiler	none provided	none provided	none provided
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
46	PP16	5.60E+09	3.80E+11	none provided
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
61	Identifiler	1.50E+06	260,000	2.40E+07
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100


	Which loci ar	e included in	each calculation?	
	Some Differe	nces in F	Reporting Stat	istics
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	4.14E+07	1.97E+07	1.54E+08
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100
k		-	difference (10 ⁵ to e deduced and re	
			abs are interpi ctropherogran	

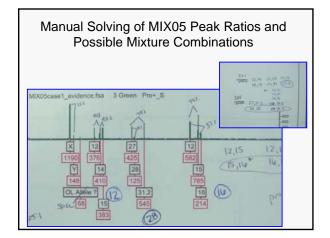
		Case 1	ASCLD-LAB	Solved loci
LabID	Kits Used	Caucasians	accredited?	listed?
90	ProPlus/Cofiler	1.18E+15	Yes	Yes
34	ProPlus/Cofiler	2.40E+11	Yes	Yes
33	ProPlus/Cofiler	2.94E+08	Yes	No
6	ProPlus/Cofiler	40,000,000	Yes	Yes
9	ProPlus/Cofiler	4.14E+07	No	No (CPE)
79	ProPlus/Cofiler	930,000	Yes	Yes
16	ProPlus/Cofiler	434,600	Yes	No
Poss	ible Reasons for Va	riability in Rep	orted Statistics:	

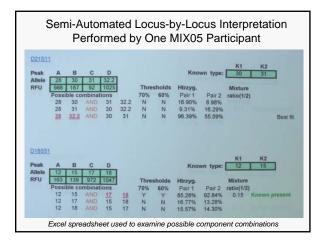

Use of victim (e.g., major component in Case 1) profile stats





Locus	Allele	Peak height	Com profiles to of	exible openent giving rise served xture	Comments
1	12	563	12	12,12	23/ A13-34 # 70% ~*
Ds	15	244		12.15	12:15 and defensed; has an also, amadian F antipation
	27	237	27,22	23,72	of smarkering roly 2 contributions :
Dat	23	2.67	w.11mg	e.4144	137+127 . 124 * LAT +4
	30	144			279 : 287 - 931 ph balance 7 -
	iz.	20	14	a. i+	4 12.19. & ph Indones as 422
De l		110			J 10.14 , 5 40 mgm

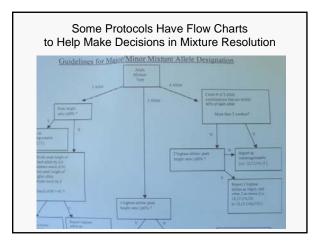




All examples with Case #1

(~3:1 mixture with female victim as the major component – and victim profile is provided)

D891170	13	1081	Holder's USA #5	+284			
D21511		132					314/100 = 0.1108
D21911	28	972					
D21811	31	104	mars	255	the		
D21511	32.2	1010	e marce	40.4	40400	2230	299/2245 : 0.1182
D18551	12	162					
D18551	15	138	minste	300	the	3297	34/241 = 0.1300
D18551	17	064					- Voul - Alitan
D18S61	18	1033					
D55818		1060			12 You want		
D55818	11	140	miller #	372	10 600 7930	2325	
D55818	12	232	m1/+/- 1T a				455/1015 0.1364
055818	13	843	\$7.6.793=4	7.15			
D13S317	. 8	129	BUJUT T	270			
D135517		141					
D135317	12	905			fahali	1992	3-10/,452-0.1035
D138317	14	817					
079820		687			take.	9818	224 / Sec = 0.1011
075820	9	155	Person a	253	6871600+20		hsis
075820	10	600	st. (17) -	24			
D75820	11	68	1000 - 64 h	229			and a second
D351368	15	1543			2012	1667	348/467= 0.7488
D351368	18	124	54 149 -	248			
D165539	9	202		191			
D18S539	10	1420	+ (+)++ TP	71	table	5181	And / 544
D165539	. 57	1337		404	1 Aud # 1337 #	419.4	444 / 5141
D165539	12	215					
TH01	7	709			Line	1557	LET/15:57= 0.1075
TH01		87	States"	168			in the second
TH01	9.5	685					


Diffe	ere	nt	Re	ро	rtir	ng	For	m	ats	s for MIX05 Data
1	NST	MIXE	6 Case 1.	Bawet o	s the dat	in of Perso	or flow to	4		
Les	Victor	*	Perpet- rator		Cavel- clanae	4/4	Average Ratis		Three Sett	1
CIBINOR	15	374	15	20	1	3.74	3.65 1	0.10	0.027	
THEI	8	274	1	1	85 84	2.74	2.74 1	144	-	
Datas	27	1.40	- 20	07	1	28	202.1	007	1001	
DINNER	10	3.19	15	1	H	3.98	327:1	0.00	0.004	
Dend	2			1		3.34	100.1	5.25		
000818	12	NA NA	11	NA	H	1.54 NA	114	755		
0136317	11	2.07	11 12		H	2.07	207.1	NA.	-	
1370690	71	.+	10	0.44	.H	2.27	227:1	100		
0168636	10	2.24	10	0.44	94 44	2.24	2.58 1	3.05	-	
C3F190	11	2.02	11	1 100	- 11	212	14	200		
David	12	1 2.35	21	1	- 14	2.55	144	.784	-	
	14	2.50	a		- 14	23) 196 230	212.1	411	400	
AWY	17	177	15	1	**	177	177-1	214	22	
DISTING	14	117	12	05		234	224 1	0.10	0.045	
TPOX	0	NA	0	NA	M	NA	HA.	164	537	
Amatoparin	X	130	X	1	01 01	1.30	130:1	NA.	*	
FGA	19 21	1.30 3.04 2.56	1000	123	H	3(A 2.47 2.35 1.91		0.40	0.104	1

		VPING RESULTS: Alleles Dete	
Locus	Victim P Reference	Item S Questioned Nample	No attempt to deduc perpetrator alleles (foreign profile)
D3S1358	15,16	15,16,(17)	,
vWA.	17	15.bt.17	
FGA	19,21	19.20.21.22	
Amelogenin	X	X(Y)	
D8S1179	14,15	12.14.15	
D21S11	27,31.2	27.(28).31.2	
D18S51	12,15	12,15,(16)	
D5S818	11	11	
D13S317	11	11,12	
D7S820	9,10	9,10	
D16S359	11,12	10,11,12	
TH01	8	7,8	
TPOX	8	8	
CSFIPO	11,12	11,12	

	would be put into CO	
LOCI	CODIS ENTRY * obligate allele	OTHER ALLELE'S IN SUSPECT'S POSSIBLE PROFILE
D3S1358	17	16,17
VWA	15*	15,17
FGA	20.22	20,22
D8S1179	12	12,12
D21S11	28*	28,31.2
D18S51	15*	15.16
D5S818	-	
D13S317	12	12.12
D7S820		10
D16S539	10,11*	10,11
THO1	7*	7,8 maybe
TPOX	8	8 maybe
CSF1PO	-	11,12 maybe

	1	ems
Locus	"S" Case 1 Evid.	"P" Case 1 Victim
D351358	15, 16, *	15, 16
D16S539	(10), 11, (12)	11, 12
AMEL	X, *	X
THO1	(7), 8	8
TPOX	8	8
CSF1PO	11, 12	11, 12
D75820	9, 10	9, 10
WWA	(15), 17	17
FGA	19, 20, 21, 22	19, 21
D8S1179	12, 14, 15	14, 15
D21S11	27, 31.2,*	27, 31.2
D18S51	12, 15, (16)	12, 15,
D5S818	11	11
D138317	11, 12	11

Item: description	D35135		FGA	AMEL		D21511			D135317				TPOX	
Pro+/CO_S: evid 1	15,16	15]17	19 20	X,X 00	12 14 15	27,31.2 (28)	12,15	н,н	11]12	9 10	10 11	718	8,8	11,12
Pro+/CO_P: victim 1 reference	15,16	17,17	19,21	X,X	14,15	27,31.2	12,15	11,11	11,11	9,10	11,12	8,8	8,8	11,12
Male interpreted from evidence 1	17	15,15 15,17	20,22	X,Y	12,12	28	16	11,11	12,12	Nd	10,11	7,7 7,8	Nd	Nd
	() Indicate Single nut Interpretes	s minor a nbers and 5 profile a	fiele detex numbers numbers th	ted. separates at the vis	ta represent i i by "[" repre- tim is presen conclusively o	sent an aileit t in the evid	e only desi ence mixtr	ignation mare of two	ther than people. M	a genoty; Aore that	one genoly			
											iforr			

Value of the MIX05 Study http://www.cstl.nist.gov/biotech/strbase/interlab/MIX05.htm

- Data sets exist with multiple mixture scenarios and a variety of STR kits that can be used for training purposes
- A wide variety of approaches to mixture interpretation have been applied on the same data sets evaluated as part of a single study
- Interpretation guidelines from many laboratories are being compared to one another for the first time in an effort to determine challenges facing future efforts to develop "expert systems" for automated mixture interpretation
- We are exploring the challenges of supplying a common data set to a number of forensic laboratories (e.g., if a standard reference data set was ever desired for evaluating expert systems)

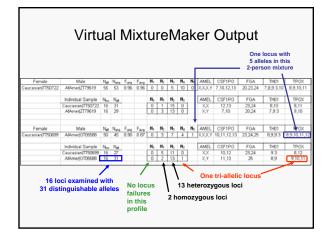
Conclusions from the MIX05 Study (Opportunities for Improvement)

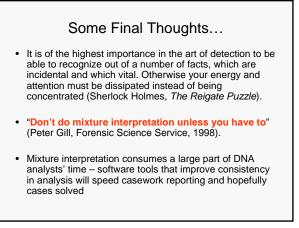
- It is worth taking a closer look at protocol differences between labs to see the impact on recovering information from mixture data
- Training should help bring greater consistency
- Expert systems (when they become available and are used) should help aid consistency in evaluating mixtures and help produce more uniform reporting formats

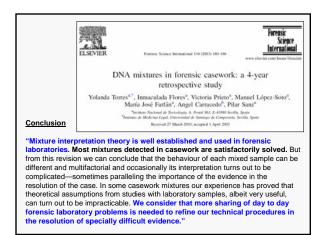
NIST Software Programs to Aid Mixture Work Excel-based programs developed by David Duewer (NIST)

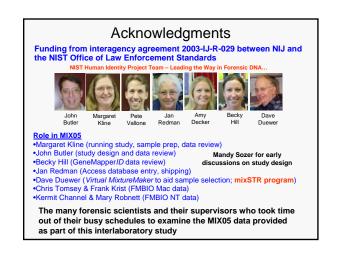
- mixSTR (developed at request of Palm Beach Sheriff's Office)
 - Does not interpret data (relies on user inputted alleles following STR data review)
 - Aids in the organization of STR mixture information
 - Considers only the presence/absence of alleles (no peak heights used)
- Virtual MixtureMaker (developed to aid MIX05 sample selection)
 - Creates mixture combinations through pairwise comparisons of input STR profiles
 - Returns information on the number of loci possessing 0,1,2,3,4,5, or 6 alleles in each 2-person mixture (also reports number of loci in each sample with 0,1,2, or 3 alleles)
 - Useful for selection of samples in mixture or validation studies with various degrees of overlapping alleles in combined STR profiles
 - Useful in checking for potentially related individuals in a population database


Programs can be downloaded from NIST STRBase web site: http://www.cstl.nist.gov/div831/strbase/software.htm


mixSTR Program


Comparisons are made between


- suspect and evidence (S/E) alleles,
- suspect and suspect (S/S) alleles (to look for potential close relatives),
- evidence and other evidence (E/E) sample(s) alleles (to see how various evidentiary samples compare to one another), and
- controls to evidence (C/E) and controls to suspect (C/S) alleles (as a quality control contamination check).


· 4 ·	0	e ge	3.9	× , %/	8.8	=			· · · ·	# 14 1060.30-A #			1251 Au	Data from HD Denks	100	0.
- 2	G 1	0	2	12.13	all	-	K	1	8.12.13	0 1	0		0	12 13	055818	20
-		0	20	18,10		1	10	11	0,18,10		11	17	12,11,10,114	20	# Adeles	21
	16	0	16		12		7	14		16	.0			#Loc: In, Ex, Total		22
			151.3-				A 10						(1)			22
Evite	Adamet			Extense	when I	- 4			Evidence (3	-32404	*	14	Evance	J Bannister 6G	Locus	24
2	20	1	1	20,23	-	Ľ	1	1		24	1	1	23,24*	21,23	FGA	26
		2	0		0			1	0,51*	6.0	1		8,11,8*	9,11	TPOX.	27
1.	13,15	1	0	13,15	3,15		0	1.1	14,13*,15*	13,15	0	1	13,14,15*	14	D851179	28
1	15	1	1	15,18			9	1.3	16,18*	11/1	0	1.3	10,10*	16,18	WVA	29
	12.17	3	1	12.17			2 0	1.3	X.Y*		0	-3	X.Y 7.9	X,Y 7.8	Penta E	30 51
	17.18	-		17.18	16		1 4		15	15.17	-1		15.18.17*	13.16	D18551	32
	11.10	÷	1	29	- "		1.1		28	-0,17	- 6	64	28.29*	28.29	071511	25
	7	1	1	6.7	7		1		7.6*	. 7	1	1	7.6*	6.6	TH01	54
31	14,17	2	0	34, 17	16		1 2	0	16	16	0		15,16,18	15,18	D351358	35
- t.	12,13	2	0	12,13						11	1	1	11,9*	5.0	Perta D	36
	12	2	0	12					-	12	0	1.2	10,11*,12*	10,11	CSF1PO	57
	9,13	31	. 9	9,13			1.1	1	11	8.12	0	13	9,11,12	11,12	D165539	視
- 14	10	-	- 0	10.11	- 11				12.11*	4,12	-2		17.11*	11.12	075820 D135317	19 80
	- 10	-	-1-	12,13	0.13		14		0.12.11	11,13	ő	- 1	12 11" 13" 14"	12.14	D55818	41 I
-		22	8	-8,10	211	-	1 9	13	- 18,10		6	14	10,11,10,10	30	# Abunc	2
	16	16	1		12		7			16	6	10		#Loci In Ex Total		43

