Mixture Statistics

Statistical Interpretation of DNA Mixtures

$$
\mathrm{CMJ}
$$

Interpetation of Comple Fownic DNA Matume

Ladd et al. 2001. Croatian Medical Journal 43(3): 244-246

1. Qualitative statement ('..cannot exclude..')
2. Interpret as single source from peak height differences, differential extraction, etc. and calculate random match probability (RMP)
3. Calculate probability of exclusion (CPE)
4. Calculate likelihood ratio (LR)

Probability of Exclusion (RMNE)

- Advantages

- Does not require an assumption of the number of contributors to a mixture
- Easier to explain in court

- Disadvantages

- Weaker use of the available information (robs the evidence of its true probative power because this approach does not consider the suspect's genotype)
- Likelihood ratio approaches are developed within a consistent logical framework

John Buckleton, Forensic DNA Evidence Interpretation, p. 223

German Type A,B, and C mixture classifications

- Type A, where major/minor contributors cannot be deduced, require stats
- LR
- RMNE
- Type B enables major contributor to be deduced - RMP (which is $1 / L R$)
- Type \mathbf{C} no stats should be attempted because of the possibility of failure to account for allele dropout due to stochastic effects with low level DNA samples

Probability of Exclusion

The probability that a random person (unrelated individual) would be excluded as a contributor to the observed DNA mixture

For each locus, 1 minus the square of the sum of frequencies for the observed alleles

$$
P E_{i}=1-\left(\sum_{i=1}^{n} p\left(A_{i}\right)\right)^{2}
$$

Buckleton (2005) Forensic
DNA Evidence Interpretation, p. 219

Across multiple loci (i.e., combined probability of exclusion, CPE)

$$
P E=1-\prod_{l}\left(1-P E_{l}\right) \quad \begin{aligned}
& \text { Buckleton (2005) Forensic } \\
& \text { DNA Evidence Interpretation } \\
& \text { p. } 221
\end{aligned}
$$

Combined Probability of Exclusion (CPE)

Each locus is calculated separately and then combined for CPE

Probability of exclusion at a single locus:

- The combined frequency of alleles detected (P) $P=$ frequency of allele $1+$ frequency of allele 2 + frequency of allele $3, \ldots \mathrm{~N}$

US Caucasian Data Allele Frequency $\begin{array}{cc}8 & 0.151 \\ 10 & 0.243\end{array}$ $12 \quad 0.16$

- The combined frequency of alleles not detected (Q)
$Q=1-P$
$\mathbf{Q}=1-0.56$
- $P E=Q^{2}+2 Q(1-Q)$
$C P I=1-C P E$

Calculation from CPI Perspective

Each locus is calculated separately and then combined for CPE

$$
\mathbf{C P I} \text { or } \mathbf{P}_{\text {profile }}=\left(\mathbf{P}_{\text {locus } 1}\right)\left(\mathbf{P}_{\text {locus } 2}\right)\left(\mathbf{P}_{\text {locus } 3}\right) \ldots\left(\mathbf{P}_{\text {locus }(\mathrm{N})}\right)
$$

Probability of inclusion at a single locus:

- Individual frequencies are summed and then squared

$$
\text { PI or } \mathrm{P}_{\text {locus }}=\left(\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}+\ldots+\mathrm{p}_{N}\right)^{2} \quad \begin{gathered}
\text { Alleles } \\
\text { present in }
\end{gathered} \begin{gathered}
\text { Remaining } \\
\text { possible allele }
\end{gathered}
$$

- $\mathrm{PE}=1-\mathrm{P}_{\text {locus }}=1-\mathrm{PI} \quad$ Essentially $\mathrm{P}^{2}+2 \mathrm{PQ}+\mathrm{Q}^{2}=1$
- $P E=Q^{2}+2 Q(1-Q)$

$\mathbf{P}+\mathbf{Q}=\mathbf{1}$ so
$\mathrm{P}=1-\mathrm{Q}$ and
$\mathrm{P}=1-\mathrm{Q}$ and
$\mathrm{Q}=1-\mathrm{P}$
Provides probability of an unrelated individual in the population is a contributor to the mixture at the loci examined

Likelihood Ratios

Basic Math Terms

- When ' + ' is used, this means 'OR'
- When ' x ' is used, this means 'AND'
- Pr. is shorthand for probability
- Therefore...
- the probability of a 'AND' b happening together is $\operatorname{Pr}(a$ and $b)=a \times b$
- the probability of a 'OR' b happening together is $\operatorname{Pr}(a$ or $b)=a+b$

Conditioning

- Probabilities are conditional, which means that the probability of something is based on a hypothesis
- In math terms, conditioning is denoted by a vertical bar - Hence, $\operatorname{Pr}(\mathbf{a} \mid \mathbf{b})$ means the probability of a given that b is true"
- The probability of an event a is dependent upon various assumptions-and these assumptions or hypotheses can change..

Probability Example - Will It Rain? (1)

Defining the Event and Assumptions/Hypotheses

- Let's suppose that a is the probability of an event (e.g., will it rain?)
- What is the probability that it will rain in the afternoon $-\operatorname{Pr}(a)$?
- This probability is dependent upon assumptions
- We can look at the window in the morning and observe if it is sunny (s) or cloudy (c)
- $\operatorname{Pr}(a)$ if it is sunny (s) is less than $\operatorname{Pr}(\mathrm{a})$ if it is cloudy (c)
- We can write this as $\operatorname{Pr}(a \mid s)$ and $\operatorname{Pr}(a \mid c)$
- Since sunny or cloudy are the only possibilities, $\operatorname{Pr}(\mathrm{s})+\operatorname{Pr}(\mathrm{c})=1$
- or $\operatorname{Pr}(\mathrm{s})=1-\operatorname{Pr}(\mathrm{c}$

Slide information from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007)

Probability Example - Will It Rain? (2)

Examining Available Data

- $\operatorname{Pr}(\mathrm{a} \mid \mathrm{s})$ and $\operatorname{Pr}(\mathrm{a} \mid \mathrm{c})$ can be calculated from data
- How often does it rain in the afternoon when its sunny in the morning?
- 20 out of 100 observations so $\operatorname{Pr}(a \mid s)=0.2$
- How often does it rain in the afternoon when it is cloudy in the morning?
-80 out of 100 observations so $\operatorname{Pr}(a \mid c)=0.8$

Probability Example - Will It Rain? (4)

Explanation of the Likelihood Ratio

$$
L R=\frac{\operatorname{Pr}(a \mid c)}{\operatorname{Pr}(a \mid s)}=\frac{0.8}{0.2}=4
$$

The probability that it will rain in the afternoon when it is cloudy in the morning or $\operatorname{Pr}(a \mid c)$ is divided by the probability that it will rain in the afternoon when it is sunny in the morning or $\operatorname{Pr}(a \mid s)$

$$
L R=\frac{\operatorname{Pr}(a \mid c)}{\operatorname{Pr}(a \mid s)}=\frac{0.8}{0.2}=4
$$

Likelihood Ratios in Forensic DNA Work

- We evaluate the evidence (E) relative to alternative pairs of hypotheses
- Usually these hypotheses are formulated as follows:
- The probability of the evidence if the crime stain originated with the suspect or $\operatorname{Pr}(E \mid S)$
- The probability of the evidence if the crime stain originated from an unknown, unrelated individual or $\operatorname{Pr}(E \mid U)$

$$
L R=\frac{\operatorname{Pr}(E \mid S)}{\operatorname{Pr}(E \mid U)} \longleftarrow \text { The numerator }
$$

Slide information from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007)

- The probability of the evidence is x times more likely if the stain came from the suspect Mr. Smith than if it came from an unknown, unrelated individual.
- It is not appropriate to say: "The probability that the stain came from Mr. Smith." because we must always include the conditioning statement - i.e., always make the hypothesis clear in the statement.
- Always use the word 'if' when using a likelihood ratio to avoid this trap

Likelihood Ratio (LR)

- Provides ability to express and evaluate both the prosecution hypothesis, H_{p} (the suspect is the perpetrator) and the defense hypothesis, H_{d} (an unknown individual with a matching profile is the perpetrator)

$$
L R=\frac{H_{p}}{H_{d}}
$$

- The numerator, H_{p}, is usually 1 - since in theory the prosecution would only prosecute the suspect if they are 100% certain he/she is the perpetrator
- The denominator, $\mathbf{H}_{\mathbf{d}}$, is typically the profile frequency in a particular population (based on individual allele frequencies and assuming HWE) - i.e., the random match probability

A Single Locus from a 2-Person Mixture

- Consider a simple two person mixture with one locus consisting of two heterozygotes with non-overlapping alleles
- If the suspect is $a b$, then
there must be another (unknown person) who is $c d$

Example \#1
 Formulating the Numerator (Prosecution Hypothesis)

- If the prosecution hypothesis is true, then we would expect genotype $a b$ to be present with 100% probability or $\mathrm{Pr}=1$.
- The chance of seeing an unknown person of type cd is the frequency of that type in the population or $2 p_{c} p_{d}$, where p_{c} is the allele frequency for allele c.
- $\operatorname{Pr}(E \mid S, U)=1 \times 2 p_{c} p_{d}=2 p_{c} p_{d}$

Relationship between Likelihood Ratio (LR) and Random Match Probability (RMP)

- For single source samples or deduced major component profiles in a mixture...

$$
L R=\frac{1}{R M P} \quad \text { or } \quad R M P=\frac{1}{L R}
$$

Example \#1

The Two Hypotheses Are Formed...

- Prosecution $\left(H_{p}\right)$: The DNA result has come from the suspect and one unknown person, or $\operatorname{Pr}(E \mid S, U)$
- Defense $\left(\mathrm{H}_{\mathrm{d}}\right)$: The DNA result has come from two unknown people, or $\operatorname{Pr}\left(E \mid U_{1}, U_{2}\right)$

Forget peak heights for the time being

Example \#1 Form			
- The defense claims that the evidence could come from any two random individuals	$\begin{gathered} \hline \text { Individual } \\ \# 1 \\ \hline \end{gathered}$	Individual \#2	Products
	ab $\begin{gathered}\text { ab } \\ 2 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{0}\end{gathered}$	[$\begin{gathered}\text { cd } \\ \times 2 p_{\text {d }} \mathrm{p}_{\mathrm{d}}\end{gathered}$	$\begin{aligned} & 2 p_{a} p_{\mathrm{p}} \times 2 \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}} \\ & 4 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{d}} \end{aligned}$
- We must work out all possible pairwise combinations from alleles abcd and their probabilities (genotype frequencies) Multiplied because you are considering individual \#1 AND individual \#2		bd	${ }_{4}^{2 p_{a} p_{c} \times 2 p_{a} p_{d}}$
	ad	bc	$\int{ }^{2 p_{a} p_{d} \times 2 p_{b} p_{c}} 4 p_{a} p_{b} p_{c} p_{d}$
	cd	ab	${ }^{2 p_{c} p_{d} \times 2 p_{a} p_{b}} 4 p_{a} p_{b} p_{c} p_{d}$
	bd		$\begin{aligned} & 2 p_{b} p_{d} \times 2 p_{a} p_{c} \\ & 4 p_{a} p_{b} p_{c} p_{d} \end{aligned}$
	bc	ad	$\begin{aligned} & \\ & 2 p_{b} p_{c} \times 2 p_{a} p_{d} \\ & 4 p_{a} p_{b} p_{c} p_{d}\end{aligned}$
Added because you are considering any of the possibilities (combination 1,2,3,4,5, OR 6)	Sum of products $\quad 24 p_{\mathrm{a}} p_{\mathrm{b}} p_{c} p_{\mathrm{d}}$		
Adapted from Peter Gill (ISFG 2007 workshop, Copenhagen, August 20-21, 2007)	$\operatorname{Pr}\left(E \mid U_{1}, U_{2}\right)=24 p_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}}$		

Example \#1

Formulating the Likelihood Ratio

- The numerator and denominator are combined to form the LR
- And common elements in both numerator and denominator are eliminated to simplify the algebraic equation...

$$
L R=\frac{\operatorname{Pr}(E \mid S, U)}{\operatorname{Pr}\left(E \mid U_{1}, U_{2}\right)}=\frac{\not 2 p_{c} p_{d}^{\prime}}{2 \not 2 p_{a} p_{b} p_{c}^{\prime} p_{d}}=\frac{1}{12 p_{a} p_{b}}
$$

All LR Calculations Follow

 the Same Basic Rules Just Shown- Form hypotheses
- Keep in mind what you are conditioning on
- The LR numerator belongs to the prosecution
- The LR denominator belongs to the defense
- Numerator and denominator are combined and equation is simplified
- Allele frequency values are placed into the equation for each locus
- The LR from each locus is combined through multiplication if the loci are independently inherited (i.e., the product rule) to form a LR for the entire profile

Example \#2

Another Example...

- The evidentiary mixture profile is from a semen stained vaginal swab and possesses alleles a, b, c, and d.
- The suspect is a, b and the victim is c, d.
- Because it is reasonable to assume that the victim's alleles would be present on the swab (i.e., an intimate sample), we can condition on this...
 Victim $=\mathrm{c}, \mathrm{d}$

With an Intimate Sample, the Hypothesis Changes...

- Prosecution $\left(\mathrm{H}_{\mathrm{p}}\right)$: The DNA result has come from the suspect and the victim, or $\operatorname{Pr}(E \mid S, V)$
- Defense $\left(\mathbf{H}_{\mathrm{d}}\right)$: The DNA result has come from the victim and one unknown person, or $\operatorname{Pr}(E \mid U, V)$

$$
L R=\frac{\operatorname{Pr}(E \mid S, V)}{\operatorname{Pr}(E \mid U, V)}
$$

Example \#2

Formulating the Denominator (Defense Hypothesis)

- The defense hypothesis is that the presence of alleles a and b are the result of an unknown person - and they concede that alleles c and d come from the victim
- Since the frequency of an unknown, unrelated individua possessing alleles a and b in the population is $2 p_{a} p_{b}$, where p_{a} is the allele frequency for allele a and p_{b} is the allele frequency for allele b, then
- $\operatorname{Pr}(E \mid U, V)=2 p_{a} p_{b} \times 1=2 p_{a} p_{b}$

Suspect $=\mathbf{a}, \mathbf{b}$
Victim = c,d

Example \#2

Formulating the Likelihood Ratio

- The numerator and denominator are combined to form the LR

$$
L R=\frac{\operatorname{Pr}(E \mid S, V)}{\operatorname{Pr}(E \mid U, V)}=\frac{1}{2 p_{a} p_{b}}
$$

- Note that this LR is the same as for a non-mixed sample comprising the suspect alone.
- This example then is an illustration of simplification by "subtraction" (victim's alleles are being removed from mathematical consideration...).

Likelihood Ratio (LR) Calculations

$$
\begin{gathered}
L R=\frac{1}{(0.151)[(2)(0.243)+2(0.166)+(0.151)]} \\
L R=6.83
\end{gathered}
$$

The prosecution hypothesis (that the suspect is the perpetrator) is 6.83 times more likely than the defense hypothesis (that an unknown, unrelated individual is the perpetrator).

Forming the Denominator $\left(\mathrm{H}_{\mathrm{d}}\right)$ for the LR...

Evidence (Mixture)	Victim	Suspect	LR
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	$\mathrm{~A}_{2}, \mathrm{~A}_{3}$	$\mathrm{~A}_{1}, \mathrm{~A}_{2}$	$\frac{1}{p_{1}\left(2 p_{2}+2 p_{3}+p_{1}\right)}$
$8,10,12$	10,12	8,10	

Potential Combinations:
If victim is A_{2}, A_{3}, then perpetrator could be

$\mathrm{H}_{\mathrm{d}} \underbrace{$| $\mathrm{A}_{1}, \mathrm{~A}_{3}$ |
| :---: |}$_{$| Other possible genotypes |
| :---: |
| contributing to the evidence |$}$

$$
\frac{\text { Frequency (probability) }}{2 n}
$$

$$
\begin{array}{ll}
2 p_{1} p_{2} & \text { Determine joint probability } \\
2 p_{1} p_{3} & \text { through summing }
\end{array}
$$ $\mathrm{p}_{1}^{2} \quad \begin{aligned} & \text { through summing } \\ & \text { individual probabil }\end{aligned}$ individ

contributing to the evides

$$
2 p_{1} p_{2}+2 p_{1} p_{3}+p_{1}^{2} \longrightarrow p_{1}\left(2 p_{2}+2 p_{3}+p_{1}\right)
$$

Likelihood Ratios for the Following Hypotheses
H_{p} : The mixture contains the DNA of the victim and the suspect
H_{d} : The mixture contains the DNA of the victim and an unknown, unrelated individual

Evidence (Mixture)	Victim	Suspect	LR	
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$	$\mathrm{~A}_{1}, \mathrm{~A}_{2}$	$\mathrm{~A}_{3}, \mathrm{~A}_{4}$	$\frac{1}{2 p_{3} p_{4}}$	
$\mathrm{~A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	$\mathrm{~A}_{1}, \mathrm{~A}_{2}$	$\mathrm{~A}_{1}, \mathrm{~A}_{3}$ or $\mathrm{A}_{2}, \mathrm{~A}_{3}$ or $\mathrm{A}_{3}, \mathrm{~A}_{3}$	$\frac{1}{p_{3}\left(2 p_{1}+2 p_{2}+p_{3}\right)}$	
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	$\mathrm{~A}_{1}, \mathrm{~A}_{1}$	$\mathrm{~A}_{2}, \mathrm{~A}_{3}$	$\frac{1}{2 p_{2} p_{3}}$	
$\mathrm{~A}_{1}, \mathrm{~A}_{2}$	$\mathrm{~A}_{1}, \mathrm{~A}_{2}$	$\mathrm{~A}_{1}, \mathrm{~A}_{1}$ or $\mathrm{A}_{1}, \mathrm{~A}_{2}$ or $\mathrm{A}_{2}, \mathrm{~A}_{2}$	$\frac{1}{\left(p_{1}+p_{2}\right)^{2}}$	
$\mathrm{~A}_{1}, \mathrm{~A}_{2}$	$\mathrm{~A}_{1}, \mathrm{~A}_{1}$	$\mathrm{~A}_{1}, \mathrm{~A}_{2}$ or $\mathrm{A}_{2}, \mathrm{~A}_{2}$	$\frac{1}{p_{2}\left(2 p_{1}+p_{2}\right)}$	
$\mathrm{A}_{1}, \mathrm{~A}_{1}$	$\mathrm{~A}_{1}, \mathrm{~A}_{1}$	$\mathrm{~A}_{1}, \mathrm{~A}_{1}$	$\frac{1}{p_{1}^{2}}$	
Adapted from Buckleton (2005) Forensic DNA Evidence Interpretation, Table 7.1, p. 229				

DAB Recommendations on Statistics

February 23, 2000

Forensic Sci. Comm. 2(3); available on-line at
http://www.fbi.gov/hq/lab/fsc/backissu/july2000/dnastat.htm
"The DAB finds either one or both PE or LR calculations acceptable and strongly recommends that one or both calculations be carried out whenever feasible and a mixture is indicated"

- Probability of exclusion (PE)
- Devlin, B. (1993) Forensic inference from genetic markers Statistical Methods in Medical Research, 2, 241-262.
- Likelihood ratios (LR)
- Evett, I. W. and Weir, B. S. (1998) Interpreting DNA Evidence. Sinauer, Sunderland, Massachusetts.

