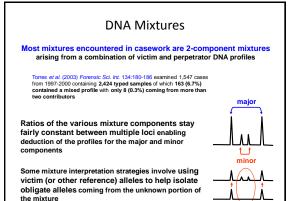



DNA Mixture Interpretation: Where did we come from? What are we doing? Where are we going?

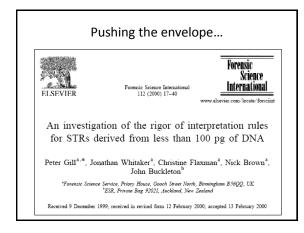
> Michael Coble, PhD NIST

Official Disclaimer


The opinions and assertions contained herein are solely those of the author and are not to be construed as official or as views of the U.S. Department of Commerce, U.S. Department of Justice, or the U.S. Department of Defense.

Commercial equipment, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the U.S. Department of Commerce, U.S. Department of Justice, or the U.S. Department of Defense nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

How did we get here? (2000 – 2005)

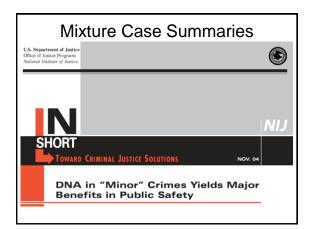


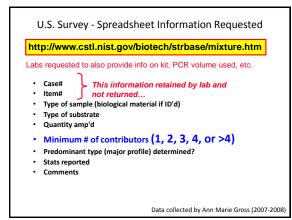
	Torres et al Spanish Case Summary Data Type of sample								
	N = 1	63	Blood	Semen	Saliva				
	Victims	N = 60	23%	73%					
Case type	Clothing/ bedding	N = 76	70%	30%					
	Weapons	N = 15	100%						
	Crime scene	N = 12	75%		25%				

Torres et al. 4 year Spanish study

- Four year study (1/1997 to 12/2000)
- 2424 samples typed
 - 955 samples from sexual assaults
 - 1408 samples from other offenses
 - 49 samples from human remains identifications
- 163/2424 samples (6.7% showed mixed profile)

95.1% (155/163) were 2-component mixtures




Low Template DNA situations exist in many samples

- In a 1:1 mixture, each DNA source is LT when the total amount of DNA in the amplification reaction is ~ 0.125 ng.
- In a 1:9 mixture, the minor component could be LT even when the total amount of DNA in the amplification is 1 ng.

Two different amplifications would be useful with a 1:9 mixture situation: Normal level of total DNA (e.g., 1 ng) so that major component is on-scale High level of total DNA (e.g., 5 ng) so that minor (e.g., ~500 pg) is out of LT realm – yes, the major component will be off-scale...

> Robin Cotton, AAFS 2003 LCN Workshop "Are we already doing low copy number (LCN) DNA analysis?"

	MN BCA Case Summary Data #2 # contributors										
	N =	373	1	2	3	4	>4				
ЭС	Sexual Assault	N = 144	57%	39%	4%						
Case type	Major Crime	N = 98	70%	21%	8%	1%					
0	High Volume	N = 131	33%	47%	18%	2%					
1			Single source		Mixtu	res					

		Mixtu	re Ca	ase	Sun	nma	arie	s			
С	ollectior	n organize	d by A	nn Gr	oss (July 2	2007 -	- Fet	200	8)	
14 Labs	State	# Samples									
MN BCA	Minnesota	334			mi	nimum #	f of cont	ributors	5		
CA DOJ	California	285	Sample	e Type	1	2	3	4	>4	N	
GBI	Georgia	19	Blood		1207	296	72	1	0	1576	35.9%
Kern Co	California	31	Bone		4	0	0	0	0	4	0.1%
CT	Connecticut	610	e-cells		215	165	94	13	2	489	11.2%
USACIL	US Army	119	Hair		62	5	1	0	0	68	1.6%
RCMP	CANADA	1555	PBM		183	127	45	7	0	362	8.3%
NJSP	New Jersey	101	Rectal	swab	0	16	1	0	0	17	0.4%
MSP	Michigan	225	Saliva		114	81	23	0	0	218	5.0%
WSP	Washington	419	Semen	/sperm	536	546	92	9	0	1183	27.0%
IL	Illinois	76	Sweat		3	3	1	0	0	7	0.2%
MT	Montana	408	Touch		85	143	77	9	0	314	7.2%
AA Co MD	Maryland	322	Vaginal		3	62	4	0	0	69	1.6%
CFS-Toronto	CANADA	276	Wearer		17	36	22	2	0	77	1.8%
			Total		2429	1480	432	41	2	4384	
	Total =	4780			55.4%	33.8%	9.9%	0.9%	0.05%		
minimum # of contributors											
		Crime		1	2	3	4	>4	N		
			Assault	884	787	145	11	0	1827	40.2%	
		Major		1261	519	182	32	0	1994	43.9%	
		High V	olume	344	220	140	11	5	720	15.9%	
		Total		2489	1526	467	54	5	4541		
				54.8%	33.6%	10.3%	1.2%	0.1%			

	mi	nimum #	# of cont	ributors			
Crime Class	1	2	3	4	>4	Ν	
Sexual Assault	884	787	145	11	0	1827	40.2%
Major Crime	1261	519	182	32	0	1994	43.9%
High Volume	344	220	140	11	5	720	15.9%
Total	2489	1526	467	54	5	4541	
	54.8%	33.6%	10.3%	1.2%	0.1%		

		Minimum # o	f Contributors
Laboratory	Crime Class	2	3+
Minn.	Sexual Assault	59	5
	High Volume	43	24
Cal DOJ	Sexual Assault	62	15
	High Volume	5	0
Conn.	Sexual Assault	17	3
	High Volume	8	25
NJ	Sexual Assault	8	0
	High Volume	17	4
Michigan	Sexual Assault	63	14
	High Volume	32	21
Wash.	Sexual Assault	64	9
	High Volume	17	13
Illinois	Sexual Assault	122	23
	High Volume	25	35
Montana	Sexual Assault	77	11
	High Volume	22	16
AA (MD)	Sexual Assault	19	1
	High Volume	51	18
Tor-CFS	Sexual Assault	76	13
	High Volume	9	9
RCMP	Sexual Assault	243	64
	High Volume	0	0

	minimum # of contributors							
Major ID'd	2	3	4	>4	N			
yes	920	152	8	2	1082	60.4%		
no	402	273	32	3	710	39.6%		
Total	1322	425	40	5	1792			
	73.8%	23.7%	2.2%	0.3%				
~40% of mixtures are Indistinguishable or Uninterpretable								

Overall Summary 2007-2008

- ~40-50% of samples from all types of cases are single source
- ~30-40% of samples from all types of cases are mixtures of at least two contributors
- ~5-15% of samples from all types of cases are mixtures of at least three contributors

2005 - 2010

- Major shift in the types of casework being submitted to the lab.
- Movement away from high-quantity DNA, 2-person sexual assault evidence to more "touch" DNA samples often with multiple numbers of contributors.

"The Quote"

ISFG DNA Commission on Mixture Interpretation

Gill *et al.* (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. *Forensic Sci. Int.* 160: 90-101

Who is the ISFG and why do their recommendations matter?

International Society of Forensic Genetics

http://www.isfg.org/

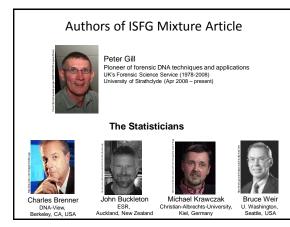
- An international organization responsible for the promotion of scientific knowledge in the field of genetic markers analyzed with forensic purposes.
- Founded in 1968 and represents more than 1100 members from over 60 countries.
- A DNA Commission regularly offers recommendations on forensic genetic analysis.

DNA Commission of the ISFG

- DNA polymorphisms (1989)
- PCR based polymorphisms (1992)
- Naming variant alleles (1994)
- Repeat nomenclature (1997)
- Mitochondrial DNA (2000)
- Y-STR use in forensic analysis (2001)
- Additional Y-STRs nomenclature (2006)
- Mixture Interpretation (2006)
- Disaster Victim Identification (2007)Biostatistics for Parentage Analysis (2007)
- Non-Human DNA testing (2011)

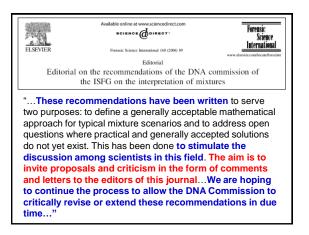
http://www.isfg.org/Publications/DNA+Commission

ISFG Executive Committee

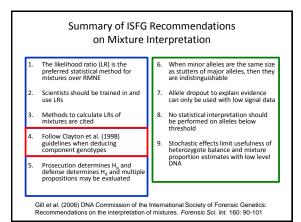


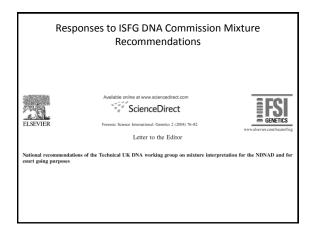
President Mecki Prinz (New York City, USA) Vice-President Niels Morking (Copenhagen, Denmark) Working Party Wather Parson (Innsbruck, Austria)

 Treasurer
 Secretary


 Leonor Gusmão
 Peter Schneider

 (Porto, Portugal)
 (Köln, Germany)





Responses to ISFG DNA Commission Mixture Recommendations

UK Response

- Gill et al. (2008) FSI Genetics 2(1): 76-82

Responses to ISFG DNA Commission Mixture Recommendations

• UK Response

- Gill et al. (2008) FSI Genetics 2(1): 76-82

- German Stain Commission
 - Schneider et al. (2006) Rechtsmedizin 16:401-404 (German version)
 Schneider et al. (2009) Int. J. Legal Med. 123: 1-5 (English version)

 Besponses to ISFG DNA Commission Mixture Recommendations

 Determination Commission Commission Mixture Recommendation

 Determination Commission Commission Mixture Recommendation

 Determination Commission Commission Recommendation Recommendation

SWGDAM Mixture Interpretation Subcommittee

- John Butler (NIST) chair
- Mike Adamowicz (CT)
- Terry Coons (OR)
- Jeff Modler (RCMP)
- Phil Kinsey (MT)
- Todd Bille (ATF)
 Allison Fastman
- Allison Eastman (NYSP)
 Bruce Heidebrecht (MD)
- Bruce Heidebrecht (MD)
 Tomura Maratti (CD) Cold.
- Tamyra Moretti (FBI DNA Unit I)
 George Carmody (Carlaton Li)
- George Carmody (Carleton U)
 Roger Frappier (CFS-Toronto)
- Jack Ballantyne (UCF/NCFS)

Gary Sims (CA DOJ) - co-chair Joanne Sgueglia (MA) Gary Shutler (WA) Cecelia Crouse (PBSO) Hiron Poon (RCMP) Steve Lambert (SC) Steven Myers (CA DOJ) Ann Gross (MN BCA)

The 15 members in bold font were involved with most of the writing (July-Oct 2009)

Started in January 2007

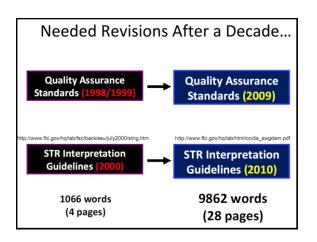
SWGDAM STR Guidelines

 Guidelines were approved at the January 14, 2010 SWGDAM meeting. The guidelines were publically released on April 8, 2010 on the FBI website for the CODIS group:

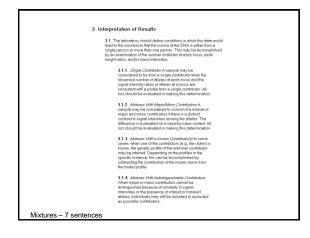
http://www.fbi.gov/hq/lab/html/codis1.htm

(under "Quality Assurance" information)

http://www.fbi.gov/filelink.html?file=hq/lab/html/codis_swgdam.pdf (PDF)


http://www.fbi.gov/hq/lab/html/codis_swgdam.htm (HTML text))

SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories


- Guidelines
 - Not Standards
 - No lab should be audited against this document
- <u>Autosomal STR Typing</u>

 This document does not address Y-STRs, mtDNA testing, or CODIS entries
- Forensic DNA Testing Laboratories

 Databasing labs may have different issues since they are working with known single source samples

Purpose and Scope (1)

This document provides guidelines for the interpretation of DNA typing results from short tandem repeats (STR) and supersedes the Scientific Working Group on DNA Analysis Methods (SWGDAM) Short Tandem Repeat (STR) Interpretation Guidelines (2000). The revised guidelines are not intended to be applied retroactively.

Purpose and Scope (2)

Guidance is provided for forensic casework analyses on the identification and application of thresholds for allele detection and interpretation, and appropriate statistical approaches to the interpretation of autosomal STRs with further guidance on mixture interpretation.

Purpose and Scope (3)

Laboratories are encouraged to review their standard operating procedures and validation data in light of these guidelines and to update their procedures as needed. It is anticipated that these guidelines will evolve further as future technologies emerge. Some aspects of these guidelines may be applicable to low level DNA samples. However, this document is not intended to address the interpretation of analytical results from enhanced low template DNA techniques.

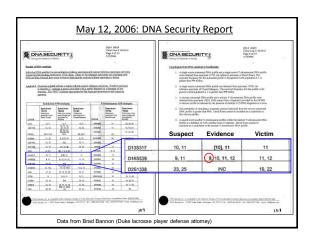
Purpose and Scope (4)

• Due to the multiplicity of forensic sample types and the potential complexity of DNA typing results, it is impractical and infeasible to cover every aspect of DNA interpretation by a preset rule. However, the laboratory should utilize written procedures for interpretation of analytical results with the understanding that specificity in the standard operating protocols will enable greater consistency and accuracy among analysts within a laboratory.

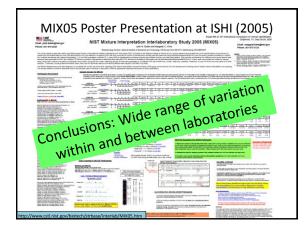
Hold that thought!!!

"Must" (used 29 times) vs. "Should" (used 41 times)

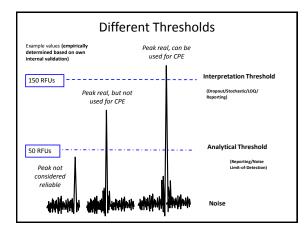
"Must" used when the FBI revised Quality Assurance Standards (2009) cover the topic:

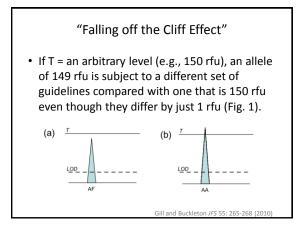

- FBI QAS Standard 9.6.1:
 - The laboratory shall verify that all control results meet the laboratory's interpretation guidelines for all reported results.
- SWGDAM Interpretation Guidelines 1.3.1:
 - The laboratory must establish criteria for evaluation of the following controls, including but not limited to: reagent blank and positive and negative amplification controls.

Gill et al. (2006) and SWGDAM (2010)


- Establish Stochastic Thresholds for use in interpreting data.
- What's the big deal about thresholds?

15 001 2005-05-03 11-05-48 fax	Sample ViCTri	None M (15755)	David Maritikar_v1	400	05	.60 B
264 2	20-01-01-01-01-01-01-01-01-01-01-01-01-01	276	0165539.	1922 C	201	294
2756-		Δ.				24
1900-		1	Δ			
930		11				
107 RFU	INCISTER	11 276 20	12			
peak should	130	2788	2478		4	
not be called	EVIDE	NCE (15823)	lidantifier vi		1	
214 2	10	276	DD16883977	Stores who are of	200	214
8 e	Λ	71][Lab inte threshold	erpretatio d = 125 R	
9 268.04 107	INC/STTR 272.15 55	11 276,19 783	12 250.25 435	~~~~~		
23_H01_2006-04-28_11-06-29.fsa	SUSPE	CT (15723)	lidentifier vi			
284 27	0	274	560 (0) (000104) (0)	A DE ANTINE CONTRACTOR O	268	284
3300 1890 1100		Λ	-			
9		275.98				

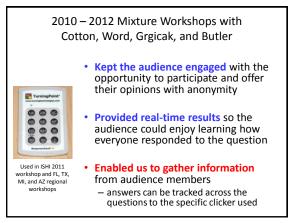



"On the Threshold of a Dilemma"

- Gill and Buckleton (2010)
- Although most labs use thresholds of some description, this philosophy has always been problematic because there is an inherent illogicality which we call the falling off the cliff effect.

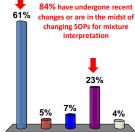
* FORENSIC SCIENCES

1

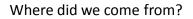

Commentary on: Budowle B, Onorato AJ, Callaghan TF, Della Manna A, Gross AM, Guerrieri RA, Luttman JC, McClure DL. Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework. J Forensic Sci 2009;54(4):810–21.

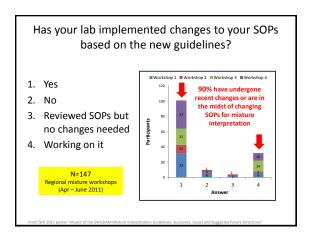
Gill and Buckleton JFS **55:** 265-268 (2010)

 "The purpose of the ISFG DNA commission document was to provide a way forward to demonstrate the use of *probabilistic models* to circumvent the requirement for a threshold and to safeguard the legitimate interests of defendants."

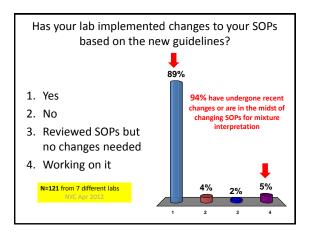

Has your lab implemented changes to your SOPs based on the new guidelines?

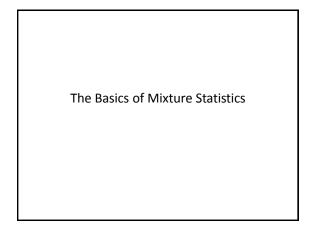
- 1. Yes
- 2. No
- 3. Reviewed SOPs but no changes needed
- 4. Working on it
- 5. Not applicable (I do not work in a forensic lab)

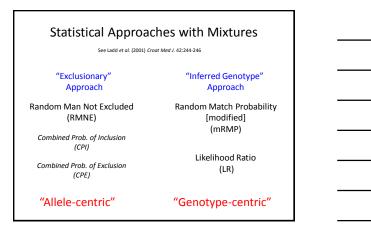

Data from 150 responses


re Work

shop (Oct 2011)



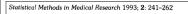

2 3



Exclusionary Approach

Statistical Methods in Medical Research 1993; 2: 241–262

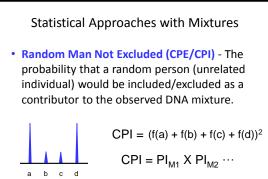
Forensic inference from genetic markers B Devlin Department of Epidemiology and Public Health, Yale University School of Medicine


Section 5.1 Exclusion probability

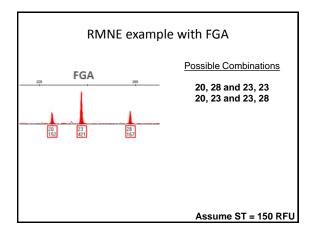
Discussion about exclusion probabilities in Paternity cases.

Two types:

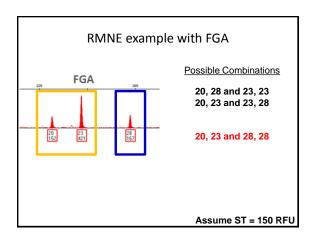
 Conditional Exclusion Probability - excluding a random man as a possible father, given the mother-child genotypes for a particular case.


(2) Average Exclusion Probability – excluding a random man as a possible father, given a randomly chosen mother-child pair.

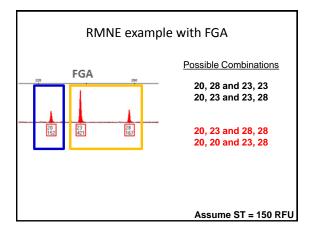
Forensic inference from genetic markers B Devlin Department of Epidemiology and Public Health, Yale University School of Medicine

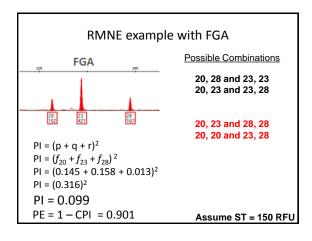

Section 5.1 Exclusion probability

"The interpretation of conditional exclusion probability is obvious, which accounts for its value in the legal arena. Unlike [LR], however, it is not fully efficient."

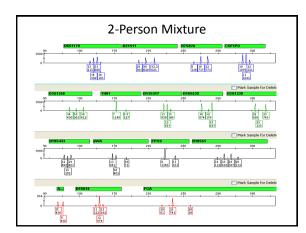


CPE = 1 - CPI





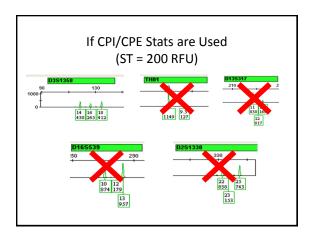
"Advantages and Disadvantages" RMNE

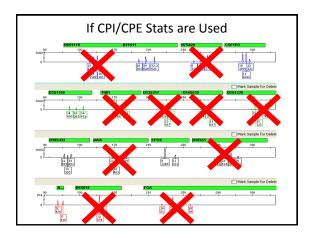

RMNE (CPE/CPI)

Advantages

- Does not require an assumption of the number of contributors to a mixture
- Easier to explain in court
- Deconvolution is not necessary

Disadvantages


- Weaker use of the available information (robs the evidence of its true probative power because this approach does not consider the suspect's genotype).
 Alleles below ST cannot be used for statistical purpose
- Alleles below ST cannot be used for statistical purpo
 There is a potential to include a non-contributor
 - Summarized from John Buckleton, Forensic DNA Evidence Interpretation, p. 223 Buckleton and Curran (2008) FSI-G 343-348.

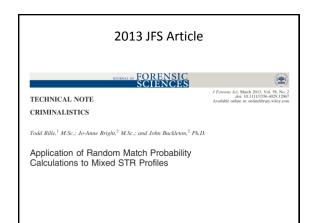


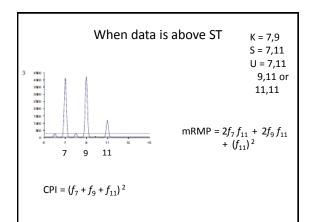
If CPI/CPE Stats are Used

Since exclusionary statistics cannot adjust for the possibility of dropout, and does not take the number of contributors into account, any loci with alleles below the stochastic threshold cannot be used in the CPI statistic.

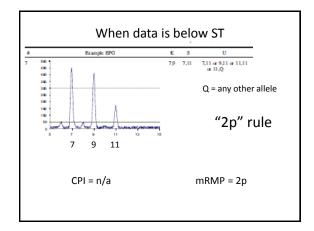
If CPI/CPI	E Stats are U	lsed
Can use D21 CSF D3 D19 TPOX	<u>Canno</u> D8 D7 TH01 D1 D13	D2 vWA 18 D5
Impact: discard	D16 ing 2/3 of the	FGA e data

If CPI/CPE Stats are Used

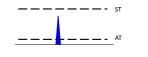

- CPI statistics using FBI Caucasian Frequencies
- 1 in 71 Caucasians included
- 98.59% Caucasians excluded


modified Random Match Probability

Statistical Approaches with Mixtures

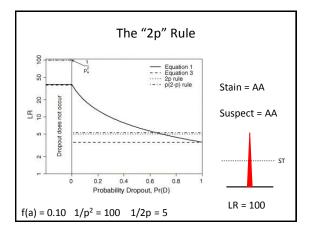

 Random Match Probability (RMP) – The major and minor components can be successfully separated into individual profiles. A random match probability is calculated on the evidence as if the component was from a single source sample.

 $RMP_{minor} = 2pq$ $= 2 \times f(b) \times f(c)$

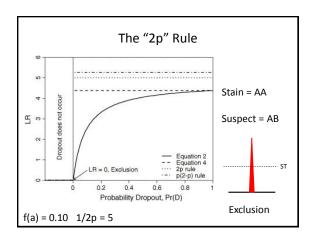


The "2p" Rule

• The "2p" rule can be used to statistically account for zygosity ambiguity – i.e. is this single peak below the stochastic threshold the result of a homozygous genotype or the result of a heterozygous genotype with allele dropout of the sister allele?



The "2p" Rule


• "This rule arose during the VNTR era. At that time many smaller alleles "ran off the end of the gel" and were not visualised."

- Buckleton and Triggs (2006)

Is the 2p rule always conservative?"

Likelihood Ratio

Statistical Approaches with Mixtures

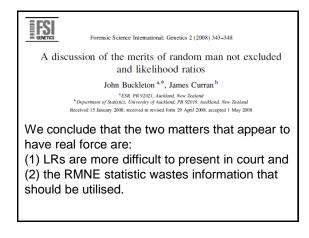
• Likelihood Ratio - Comparing the probability of observing the mixture data under two (or more) alternative hypotheses

- We evaluate the evidence (*E*) relative to alternative pairs of hypotheses
- Usually these hypotheses are formulated as follows:
 - The probability of the evidence if the crime stain originated with the suspect or Pr(E/S)
 - The probability of the evidence if the crime stain originated from an unknown, unrelated individual or Pr(E/U)

$$LR = \frac{\Pr(E \mid S)}{\Pr(E \mid U)} \xrightarrow{\text{The numerator}}$$
The denominator

Slide information from Peter Gi

Likelihood Ratio (LR)


 Provides ability to express and evaluate both the prosecution hypothesis, H_p (the suspect is the perpetrator) and the defense hypothesis, H_a (an unknown individual with a matching profile is the perpetrator)

$$LR = \frac{H_p}{H_d}$$

 The numerator, H_p, is usually 1 – since in theory the prosecution would only prosecute the suspect if they are 100% certain he/she is the perpetrator

 The denominator, H_a, is typically the profile frequency in a particular population (based on individual allele frequencies and assuming HWE) – i.e., the random match probability

Slide information from Peter Gill

To Summarize

- From 2000 2006, most DNA cases gave single source profiles and usually contained large quantities of DNA.
- The few mixtures encountered were two-person mixtures.
- Since 2006 more and more cases are mixtures with low level DNA profiles.
- STR kits are more sensitive we are doing cases today that we wouldn't touch 15 years ago.

To Summarize

- In the U.S., most labs have adopted a CPI statistical approach. This approach suffers when alleles have dropped out of the evidence.
- Statistical approaches that consider GENOTYPES make better use of the data.

