

Setting the Baseline A low and high value are set The Baseline is set to eliminate the background signal found in the early cycles of amplification The Baseline should not interfere with the exponential phase of the amplification The Baseline is set to allow for accurate C_T determination Many qPCR methods have a prescribed Baseline

 C_{T} is simply the cycle number selected at a specific threshold value

The threshold value is selected where all the data is undergoing exponential amplification

The threshold value can be selected manually or by the software

The threshold value for different methods may vary

Selected in the log(signal) plot view

Equation of a Straight Line

The equation Y = mX + b defines a straight line

m is the slope

- $(y_1 y_2)/(x_1 x_2)$
- The "steepness" of the line
- Relates to the efficiency of the PCR

b is the Y-intercept (where the line crosses the Y-axis)

X is your log[DNA] concentration (serial dilutions)

Y is the C_{T} value

Linear Least Squares Regression

The most widely used modeling method

"regression," "linear regression," or "least squares"

Many processes in science and engineering are welldescribed by linear models

Good results can be obtained with relatively small data sets

Main disadvantages: limitations in the shapes that linear models can assume over long ranges, possibly poor extrapolation properties, and sensitivity to outliers

Linear Least Squares Regression

Carried out by the instrument software

Can also be easily performed in Excel, Sigma Plot etc

Briefly, the method solves for m and b from the data points (remember X and Y are constants)

Finds numerical values for the parameters that minimize the sum of the squared deviations between the observed responses (your data!) and the functional portion of the model (the line!)

President's DNA Initiative Training Materials

R² (R-squared)

Coefficient of determination

A statistic for a predictive model's lack of fit using the data from which the model was derived

$$\mathsf{R}^{2}\text{-squared} = 1 - \frac{\sum_{i} (Y_{i} - \overline{Y}_{i})^{2}}{\sum_{i} (Y_{i} - \overline{Y}_{i})^{2}}$$

A perfectly fitting model yields an R^2 of 1 (all points fall directly on the line)

FUR Y	Special Y Composent	У лереклания на У сананаские У санокалан Улеронт							
Well	Sample Name	Detector	Tesk	a	StdDev Ct	Qty			
13	1a	Quantifier Human	Unknown	26.40		4.96			
		Quantifier Human IPC	Unknown	27.65					
A4	1b	Quantifier Human	Unknown	25.71		8.05			
		Quantifiler Human IPC	Unknown	27.97					
80	28	Quantifiler Human	Unknown	27.16		2.94			
		Quartifier Human IPC	Unknown	27.58					
84	2b	Quantifier Human	Unknown	27.18		2.90			
		Quantifiler Human IPC	Urknown	27.75					
C3	38	Quantifiler Human	Unknown	28.33		1.30			
		Quartifier Human IPC	Unknown	27.58					
C4	36	Guantifier Human	Unknown	28.31		1.32			
		Quantifier Human IPC	Unknown	27.69					
3	40	Quantifiler Human	Unknown	29.95		4.24e-001			
		Quartifier Human IPC	Unknown	27.57					
04	4b	Quantifier Human	Unknown	29.78		4.78e-001			
		Quantifiler Human IPC	Unknown	27.60					
24	45	Quantifier Human IPC Quantifier Human Quantifier Human IPC	Unknown Unknown Unknown	27.57 29.78 27.60		4.78e-001			

Selecting	g 6 Thresh	old value	es then es	timatin	g [DNA]] for
sample r	un in dupl	icate		Rx	n efficie	ency
	Threshold	R2	slope	E	E -1	
Low	0.004	0.989	-3.474	1.94	0.94	
Low	0.01	0.991	-3.336	1.99	0.99	
Below Opt	0.1	0.994	-3.289	2.01	1.01	
Optimal	0.2	0.994	-3.317	2.00	1.00	
High	1.7	0.993	-3.421	1.96	0.96	
Above Opt	0.25	0.995	-3.322	2.00	1.00	
			An	p effic	iency	

Importance of the Calibrant!

Things to keep in mind about Calibrants

The Calibrant is usually a pristine well-characterized DNA sample

- Not extracted the same as the unknown
- Not subjected to the same environment as your unknown(s)
- Will not contain inhibitors, Heme, Ca++ etc
- May be from a cell line or mixed source sample
- May exhibit lot-to-lot variation (monitor this)

m	b	CT	[DNA]	%	delta	m	b	CT	[DNA]	%	delta
-3.3219	26	25.1	1.87	6.70	0.13	-3.3219	26	25.3	1.62	18.77	0.38
-3.3219	26	25	2.00			-3.3219	26	25	2.00		
-3.3219	26	24.9	2.14	6.70	-0.14	-3.3219	26	24.7	2.46	18.77	-0.46
-3.3219	26	20.1	59.72	6.70	4.29	-3.3219	26	20.3	51.99	18.77	12.02
-3.3219	26	20	64.00			-3.3219	26	20	64.00		
-3.3219	26	19.9	68.60	6.70	-4.59	-3.3219	26	19.7	78.80	18.77	-14.79
		± ().1 C	т				± ().3 C	C _T	

Summary Data is collected in the exponential range After threshold selection, amplification curve data is reduced down to C_T values The log[DNA] vs C_T standard curve is the backbone of data interpretation R² > 0.990 Experiment with baselines and C_T values Errors/variations in the DNA Calibrant concentration are directly translated into the estimates for the unknowns