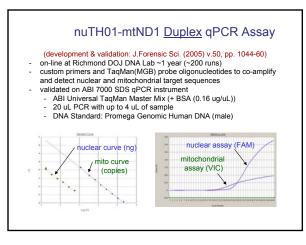
### **Session 5D**

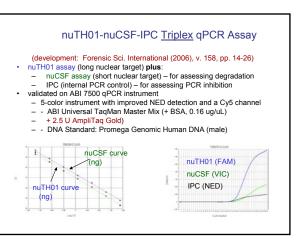
Quantitative PCR (qPCR) Tools for the DNA Analysis of Challenging Samples: the CAL DOJ Triplex Degradation Assay

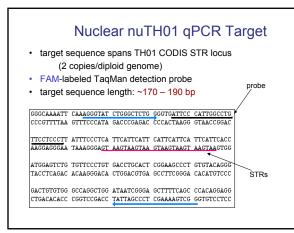
Cristian Orrego (Mark Timken, Bill Hudlow, Katie Swango, Mavis Date Chong,Steven Myers, Martin Buoncristiani)

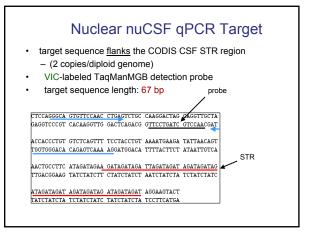
> Jan Bashinski DNA Laboratory Richmond, California Department of Justice, State of California cristian.orrego@doj.ca.gov

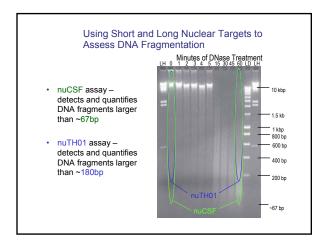
# How To *Identify* Challenging Samples and Which Tool(s) to Use?

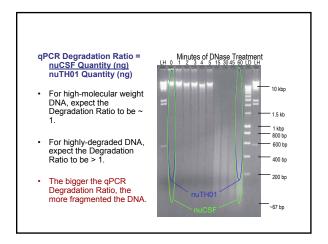

- experience (analyst, intra-lab, inter-lab, literature)
- unsuccessful analysis using routine methods
  - *i.e.*, partial or null typing results
    - ✓ inefficient use of analyst time
    - ✓ inefficient use of reagents and kits
      ✓ inefficient use of (possibly limited) DNA extract
    - Intendent use of (possibly inflited) DNA ex
    - ✓increased documentation and review

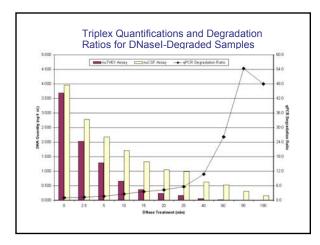

#### Goal

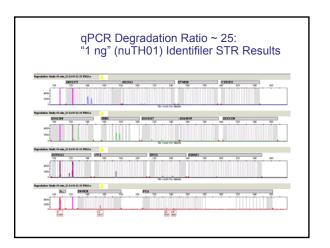

- to develop real-time qPCR tools to help identify challenging samples so that optimal strategies can be attempted at the outset of analysis
  - measure human DNA quantities
    - · total nuclear DNA
    - · mitochondrial genome copies
    - total male DNA (Y-chromosome)
  - assess DNA quality
    - · degree of degradation
    - · presence of PCR inhibitors


# qPCR Assays at CA DOJ

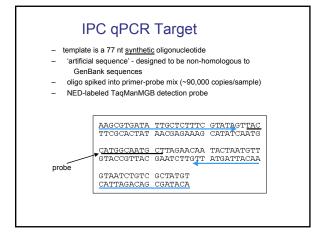

- > duplex nuclear-mitochondrial qPCR assay
  - developed for Missing Persons DNA Program (MPDP-Richmond), but also used for non-MPDP cases
  - on-line for ABI 7000; >20 qualified analysts
- triplex qPCR assay to assess nuclear DNA <u>quantity</u> and <u>quality</u> (DNA degradation and presence of PCR inhibitors)
  - developed for general casework (non-mito)
  - DOJ-wide (Richmond DNA lab and DOJ field labs)
  - validated on ABI 7500; analysts in training



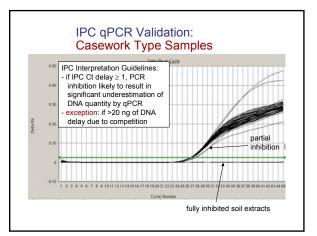



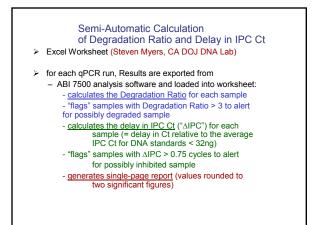


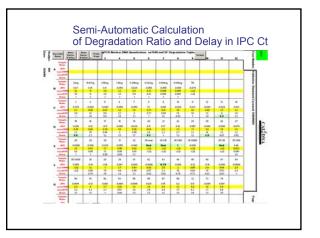











|                                                             | rpreting the qPCR<br>gradation Ratio                                                                                                   |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Degradation<br>Ratio                                        | STR Implications                                                                                                                       |
| 1 – 3                                                       | none                                                                                                                                   |
| 3 – 5                                                       | "wedge" effect,<br>possible cross-dye pull-up                                                                                          |
| >5<br>(>10 ⇒<br>artifacts<br>expected to<br>be significant) | increasing "wedge" effect, pull-up,<br>dropped-out alleles at larger loci,<br>off-scale peaks, called stutter peaks,<br>-A shouldering |











|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | of Degr |                                                                                                                                              |                       |                                                                                                | -                                                                                                      | an           |           |                                                                  | ay i  | n IF                        | PC Ct             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|-----------|------------------------------------------------------------------|-------|-----------------------------|-------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | t Number of Ok                                                                                                                               | A Great star          | 4                                                                                              | 1                                                                                                      | They address | 1-1400 Fr | -                                                                |       | u                           | Cue Mande         |  |
| and a second sec | 30y 8.87% 38   | 34 neat |                                                                                                                                              |                       | 34 1:10<br>Und<br><lq< th=""><th colspan="3">34 1:100</th><th colspan="2">34 1:1000</th></lq<> |                                                                                                        |              | 34 1:100  |                                                                  |       | 34 1:1000                   |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual Station | 37 B. 1 | Und<br><lq< td=""><td colspan="2" rowspan="2">1<br/>≺LQ</td><td></td><td colspan="2" rowspan="2">-0.099<br/><lq< td=""></lq<></td></lq<>     |                       |                                                                                                |                                                                                                        |              | 1<br>≺LQ  |                                                                  |       | -0.099<br><lq< td=""></lq<> |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         |                                                                                                                                              |                       |                                                                                                |                                                                                                        |              |           |                                                                  |       |                             |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 30 12 1 | <lq< td=""><td colspan="3"><lq< td=""><td colspan="2"><lq< td=""><td></td><td colspan="2"><lq< td=""></lq<></td></lq<></td></lq<></td></lq<> |                       |                                                                                                | <lq< td=""><td colspan="2"><lq< td=""><td></td><td colspan="2"><lq< td=""></lq<></td></lq<></td></lq<> |              |           | <lq< td=""><td></td><td colspan="2"><lq< td=""></lq<></td></lq<> |       |                             | <lq< td=""></lq<> |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | $\bigcirc$                                                                                                                                   |                       | (                                                                                              | $\bigcirc$                                                                                             |              |           | $\bigcirc$                                                       |       |                             | $\bigcirc$        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | -                                                                                                                                            | 1.48                  | 28                                                                                             | 13                                                                                                     | 12           | -         | 1                                                                | 15    | 12                          | 0.0               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 8 8 8   | -                                                                                                                                            |                       | (Riveral                                                                                       | 24110                                                                                                  | 34100        | 341800    | V                                                                | 211   | 11100                       | <sup>€</sup> DNA  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>c</i>       |         | 1.0                                                                                                                                          | 842                   | 199                                                                                            | 12.0                                                                                                   | 40           | -LG       | ( —                                                              | - 10  | 0.041                       |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semple         | 15      | 10                                                                                                                                           | - 10                  | 41                                                                                             | 41                                                                                                     | **           |           |                                                                  |       | **                          |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AIPC           | -0.019  | 1041<br>17<br>14                                                                                                                             | 4.000<br>4.40<br>1.5a | 4.0000<br>4.07                                                                                 | -17                                                                                                    | -            |           |                                                                  | 4.000 | 1000                        |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |         | <u>1</u>                                                                                                                                     | 0                     | 442                                                                                            | 11                                                                                                     | 6/10         | 8.79      | 0.60                                                             | 14    | 1                           |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng nuTH01      | 0.36    | 4.069                                                                                                                                        | 1.104                 | 88.7                                                                                           |                                                                                                        | 4            | -         | -                                                                | 1.001 |                             |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng nuCSF       | 1.3     | 2.57                                                                                                                                         | 10                    | 44<br>13                                                                                       | 8.8<br>12                                                                                              | 17           | 6.1<br>14 | 10                                                               | 10    |                             |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ratia          | 3.6     |                                                                                                                                              |                       |                                                                                                |                                                                                                        |              |           |                                                                  |       |                             | 7                 |  |

#### Multiplex qPCR Analysis of Challenging Samples

nuTH01-nuCSF-IPC Triplex Assay

#### - IPC to detect PCR inhibition

- re-quant with dilution series ?
- achieve non-inhibited downstream analysis by:
  - » dilution
  - » augmented STR amp (extra Taq/BSA)
  - » sample clean-up

#### - Degradation Ratio to detect DNA fragmentation

- MiniSTRs (use nuCSF quant for input)
- mitochondrial analysis