

- primers)
- Acceptance of statistical reports using the counting method due to previous experience with mtDNA

Scenarios Where Y-STRs Can Aid Forensic Casework

- Sexual assaults by vasectomized or azoospermic males (no sperm left behind for differential extraction)
- Extending length of time after assault for recovery of perpetrator's DNA profile (greater than 48 hours)
- Fingernail scrapings from sexual assault victims
- Male-male mixtures
- Other bodily fluid mixtures (blood-blood, skin-saliva)
- Gang rape situation to include or exclude potential contributors
- Confirmation of amelogenin Y negative males

Disadvantages of the Y-Chromosome

- Loci are not independent of one another and therefore rare random match probabilities cannot be generated with the product rule; must use haplotypes (combination of alleles observed at all tested loci)
- Paternal lineages possess the same Y-STR haplotype (barring mutation) and thus fathers, sons, brothers, uncles, and paternal cousins cannot be distinguished from one another
- Not as informative as autosomal STR results

 More like addition (10 + 10 + 10 = 30) than multiplication (10 x 10 x 10 = 1,000)

What has happened in the past few years...

- "Full" Y-chromosome sequence became available in June 2003; over 350 Y-STR loci identified (only ~20 in 2000)
- Selection of core Y-STR loci (SWGDAM Jan 2003)
- Commercial Y-STR kits released

 Y-PLEX 6,6,12 (2001-03), PowerPlex Y (9/03), Yfiler (12/04)
- Many population studies performed and databases generated with thousands of Y-STR haplotypes
- Forensic casework demonstration of value of Y-STR testing along with court acceptance

primer sets					
STR Marker	Position (Mb)	Repeat Motif	Allele Range	Mutation Rate	
DYS393	3.17	AGAT	8-17	0.05%	
DYS19	10.12	TAGA	10-19	0.20%	
DYS391	12.54	TCTA	6-14	0.40%	
DYS439	12.95	AGAT	8-15	0.38%	
DYS389 I/II	13.05	[TCTG] [TCTA]	9-17 / 24-34	0.20%, 0.31%	
DYS438	13.38	TTTTC	6-14	0.09%	
DYS390	15.71	[TCTA] [TCTG]	17-28	0.32%	
DYS385 a/b	19.19, 19.23	GAAA	7-28	0.23%	
DYS392	20.97	TAT	6-20	0.05%	

as is typically done with mtDNA results

Questions under review: Should a theta correction be employed? If so, what is the appropriate formula to use involving theta? Would such a hypothetical theta value be universal for all subpopulations? Would it really change the overall reporting statistic significantly?

ncs	Current Y	-STR Data	abases
	AGENCY	# MARKERS	# SAMPLES
	NCFS	76	1,396
	University of AZ	38	2,518
	AB	17	3,561
	Promega	12	4,004
	Reliagene	11	4,623
	Proposed National		16,102
	Y-STR Database		
	Proposed National		29,187
	Y-STR Database		(54,863 MHL)
	with YHRD		NI_J
_	Slide from Jack Ballantyne,	CODIS Conference (Oct 2006)	presentation

The Meaning of a Y-Chromosome Match

Conservative statement for a match report:

The Y-STR profile of the crime sample matches the Y-STR profile of the suspect (at xxx number of loci examined). Therefore, we cannot exclude the suspect as being the donor of the crime sample. In addition, we cannot exclude all patrilineal related male relatives and an unknown number of unrelated males as being the donor of the crime sample.

Y-STR Mutations

Mutations will impact kinship testing involving Y-STRs

(e.g., use of a paternal relative as a reference for a missing persons case)

NIST Work with Father-Son Samples

- Samples obtained from paternity testing laboratory as buccal swabs, extracted with DNA-IQ, quantified, diluted to 0.5 ng/uL
- To-date: 100 father-son pairs of U.S. Caucasian, African American, Hispanic, and Asian (800 samples)
- Verified autosomal STR allele sharing with Identifiler (QC for gender and potential sample switches)
- Typed with Yfiler (17 Y-STRs) examined mutations

Separating Brothers with 47 Y-STRs

- Two suspected brothers (ZT79338 and ZT79339) are part of our ~660 U.S. sample dataset at NIST.
- Thus far, we have evaluated 47 Y-STR allele calls on these samples.
- A mutation at DYS391 separates these individuals (one contains allele 11 and the other allele 10).
- These samples share autosomal STR alleles and contain identical mtDNA sequences.

Y-STR Mutation Rates for the 17 Yfiler Loci

Yfiler kit loci	Lite	erature Sur	nmary *		NIST Res	ults	
Locus	Mutations	# Meioses	Mutation Rate	Mutations	# Meioses	Mutation Rate	TOTAL
DYS19	12	7272	0.165%	0	297	0.000%	0.159%
DYS3891	11	5476	0.201%	3	297	1.010%	0.243%
DYS389II	12	5463	0.220%	3	297	1.010%	0.260%
DYS390	16	6824	0.234%	1	293	0.341%	0.239%
DYS391	23	6702	0.343%	0	297	0.000%	0.329%
DYS392	4	6668	0.060%	0	297	0.000%	0.057%
DYS393	4	5456	0.073%	0	298	0.000%	0.070%
DYS385a/b	22	9980	0.220%	0	297	0.000%	0.214%
DYS438	1	2434	0.041%	0	297	0.000%	0.037%
DYS439	12	2409	0.498%	2	296	0.676%	0.518%
DYS437	5	2395	0.209%	0	296	0.000%	0.186%
DYS448	0	143	0.000%	0	294	0.000%	<0.23%
DYS456	1	143	0.699%	1	296	0.338%	0.456%
DYS458	3	143	2.098%	2	297	0.673%	1.136%
DYS635	3	1016	0.295%	3	298	1.007%	0.457%
GATA-H4	3	1179	0.254%	2	296	0.676%	0.339%

Father-Son Pairs													
Ethnicity	Sample	locus	locus Allele Allele (father) (child)										
African American	65B	Y GATA H4	11	9	loss of 2 repeats								
African American	46B	DYS389I and DYS389II	14,30	13,29	loss of 1 repeat								
African American	58B	DYS389I and DYS389II	14,32	15,33	gain of 1 repeat								
African American	18B	DYS390	24	23	loss of 1 repeat								
African American	90B	DYS456	15	16	gain of 1 repeat								
African American	16B	DYS458	18	19	gain of 1 repeat								
African American	39B	DYS458	18	19	gain of 1 repeat								
African American	16B	DYS635	23	22	loss of 1 repeat								
African American	47B	DYS635	22	23	gain of 1 repeat								
African American	72B	DYS635	22	23	gain of 1 repeat								
African American	22B	DYS448	19,20	19,20	Duplication								
African American	72B	DYS448	19,20	19,20	Duplication								
African American	97B	DYS448	17.2,19,20	17.2,19,20	Triplication *								
African American	33B	DYS389I and DYS389II			Deletion *								
African American	33B	DY\$439			Deletion *								

Deletions of some Y-STRs can be an inadvertent diagnosis of male infertility

King et al. (2005) Inadvertent diagnosis of male infertility through genealogical DNA testing. J. Med. Genet. 42:366-368

- AZFa deletion (<1 in 100,000 men): expected to lack DYS389I/II, DYS437, DYS438, DYS439
- AZFb deletion (very rare): expected to lack DYS385 and DYS392
- AZFc deletion (1 in 4,000 men): expected to lack DYS464
- Possible that "incomplete" haplotypes are not being submitted to the Y-STR haplotype databases
- Thus, Y-STRs are not neutral with respect to fertility information

Practical Information on Y Deletions

- If DYS458 is deleted in Yfiler, then your sample is likely to lack an Amelogenin Y amplicon as DYS458 and AMEL Y are 1.13 Mb apart on the short arm of the human Y-chromosome

 Chang *et al.* (2007) *Forensic Sci. Int.* 166: 115-120
- Many Y-chromosomes are more complicated than originally thought!

Going Beyond Commercial Y-STR Kits

- Most forensic DNA laboratories (certainly in the U.S.) will only use commercially available kits due to quality control issues
- Using these kits as a starting point, are there additional loci that would be beneficial in separating samples with common types, which could be advocated to companies for possible future adoption in Y-STR kits?
- Is it possible to regularly resolve individuals from the same paternal lineage (e.g., fathers and sons) if enough Y-STRs are examined?

Data Set Used to Examine Common Types

- Yfiler kit (**17 Y-STR loci**) run on all NIST male U.S. population samples
 - makes up ~20% of Applied Biosystems database
 - submitted to the YHRD
- Additional 20 Y-STR loci run on full set of NIST population samples (and several less polymorphic ones only on subset of samples)
 - Butler, J.M., Decker, A.E., Vallone, P.M., Kline, M.C. (2006) Allele frequencies for 27 Y-STR Loci with U.S. Caucasian, African American, and Hispanic samples. *Forensic Sci. Int.* 156:250-260.

Percent Unr 3.96 %	Subdividir with A esolved (minimal haploty	ng Common Types Additional Loci	Most common type DYS19 - 14 DYS3891 - 13 DYS3891 - 29 DYS392 - 41 DYS393 - 11 DYS392 - 13 DYS392 - 13 DYS393 - 13 DYS395 ab - 11,14
3.50 %	(US haplotype)	Provides confidence that Yfil a pretty good job of separ unrelated paternal lineag	er does ating ges
2.89 %	(PowerPlex Y)	A) Identical (no improvement over \ DYS444.446.485.495.505.508.53	Yfiler): 34,540,556
0. 46 %	(Yfiler)	 B) Subdivide into two groups (2)(1) DYS449,463,520,532,533,557,57 C) Subdivide into three groups (1)(2) 	; ; 70,594,643 1)(1):
All resolved	(18-37 loci)	DYS522 or DYS576	
The 26 sa sample pop	mples with the mos ulation with use of	st common type can be resolved in the 17 Yfiler loci plus DYS522 or E	n this DYS576

# times						
haplotype	9	11	12	17		
observed	MHL	SWGDAM	PPY	Yfiler	ALL 37	When all 37 loci
1	429	486	505	626	652	(Yfiler + 20 new
2	34	33	34	12	2 📕	loci) are run on
3	13	10	14	(2)		656 samples,
4	4	6	3			only two
5	3	1	2			haplotypes are
6	1	1				observed twice
7	1	2	1			
8	1					
9	2					Those two opto
10		1				of three
11	1					unseparated
12			1			Yfiler types will
13	1					be examined
15		1				next
26	1					
HD	0.996644	0.998529	0.999064	0.999916	0.999991	
%DC	0.748476	0.824695	0.853659	0.97561	0.996951	Total = 656
# HT	491	541	560	640	654	samples

Sı	ubo	divid	ling Most	g U _{Com}	nre		olve De	ed	Yfi	ler	Ha	apl	oty	/pe	es ((1)	
Sample Info	DYS 19	DYS 385a/b	DYS 3891	DYS 389II	DYS 390	DYS 391	DYS 392	DYS 393	DYS 438	DYS 439	DYS 437	DYS 448	DYS 456	DYS 458	DYS 635	н4	
MT97185	14	11,14	13	29	24	11	13	13	12	12	15	19	16	17	23	12	
ZT79333	14	11,14	13	29	24	11	13	13	12	12	15	19	16	17	23	12	
TT51702	14	11,14	13	29	24	11	13	13	12	12	15	19	16	17	23	12	
Lo DYS	Locus M1 DY3444		185	<u>ZT79</u>	333	<u>TT5</u>	1702 2	-	Locus DYS532		MT	<u>MT97185</u> 14		<u>ZT79333</u> 14		<u>TT51702</u> 13	
DYC	9444	12		12		12		-	DV6522		19			12		13	
DYS	5449	30	,	30)	31		-	DYS534			15			15		
DYS	6463	24		24	4 23		23	-	DY3540)YS540 12		12		12		
DYS	485	15	;	15	5	15			DYS556		/8556 11		11		- 11		
DYS	495	18		10		16		-	DYS557		S557 15		17		17		
DYS	505	12		12			2	-	DYS570		0 16		17			17	
DYS	508			- 1			-	-	DY	DYS576		17		20		18	
DYS	\$520	21		22	2	2	21	_	DY	S594		9		10		10	
DYS	522	10)	12	2	1	1		DY	S643		10		11		10	
DYS DYS	520 522 Eithe	21 10 er DYS	522 (22 12		21 11 6 will fully] ly re	DY DY SOlV	DYS594 DYS643 olve all t		9 10 e of 1	thes	10 11 e sai	mple	10 10 S	

Sı	ubo	divic	ding	g U	nr	eso	olv	ed	Yfi	iler	Н	ap	loty	/pe	es(2)
Sample Info	DYS 19	DYS 385a/b	DYS 3891	DYS 3898	DYS 390	DYS 391	DYS 392	DYS 393	DYS 438	DYS 439	DYS 437	DYS 448	DYS 456	DYS 458	DYS 635	H4
PT83904	13	13,14	15	31	24	9	11	13	10	10	14	20	16	18	21	12
PT84348	13	13,14	15	31	24	9	11	13	10	10	14	20	16	18	21	12
ZT80369	13	13,14	15	31	24	9	11	13	10	10	14	20	16	18	21	12
DYS DYS DYS	444 446 449	12 12 31		12 12 31		12 12 31		-	D' D'	Y8532 Y8530 Y8534	;	14 11 16		14 11 17		14 11 17
DYS	483	18		18		18			DYS540		,	11		11		-11
DYS	485	15		15		15			D	Y3556)	12		12		12
-DYS	495	12		12		12			D	Y3557		18		18		18
- DYS	505	11		11		11			D	Y357()	22		22		22
DYS	508	11		-11		-11			D	Y3576	,	18		18		18
DYS	520	19		19		19			D	Y359-	-	11		11		11
		12		12		12			D	YS643	3	12		12		12

Summary on Subdividing Common Types

- 640 haplotypes were observed in the 656 U.S. population samples with the Yfiler loci: 626 were unique, 2 were observed 3 times, and 12 haplotypes were observed twice.
- With the addition of 20 new Y-STR loci, all but two sample pairs are resolved.
- In this sample set, the 7 Y-STRs (DYS532, DYS522, DYS576, DYS570, DYS505, DYS449, DYS534) have the same ability to resolve the sample haplotypes as all 20 new loci.
- These 7 loci will be the focus of future studies and multiplex assays.

