













- The NIST SRM Office began selling SRM 2372 Human DNA Quantitation Standard on October 5, 2007
- Cost will be \$316.00 per unit



| HAS<br>A                                          | II Cert                            | tified Values<br>ance for SR                              | s of Decadic<br>RM 2372                         |
|---------------------------------------------------|------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Component                                         | 260 nm                             | error at 260nm                                            | Nominal [DNA], ng/μL                            |
| Α                                                 | 1.049                              | ± 0.025                                                   | 52.5                                            |
| В                                                 | 1.073                              | ± 0.030                                                   | 53.6                                            |
| С                                                 | 1.086                              | ± 0.028                                                   | 54.3                                            |
| The nominal<br>50 ng/µL dou<br><b>uncertainty</b> | DNA cor<br>uble stran<br>in this c | ncentration was e<br>aded DNA. <b>We de</b><br>onversion. | estimated <i>Using 1 OD</i> =<br>o not know the |





| Exam      | ple of          | Cal            | libran            | t Va          | lue A                 | ssig         | Inmei   | nt   |
|-----------|-----------------|----------------|-------------------|---------------|-----------------------|--------------|---------|------|
| Standard  | 1               |                | 2                 |               | 3                     |              | 4       |      |
| Dilution  | [DNA]           | SD             | [DNA]             | SD            | [DNA]                 | SD           | [DNA]   | SD   |
| 10x       | 105             | 3.2            | 122               | 1             | 126                   | 5.8          | 256     | 10.1 |
| 50x       | 105             | 3.3            | 122               | 7.3           | 145                   | 0.8          | 272     | 7.8  |
| 100x      | 99              | 6.2            | 113               | 11.6          | 138                   | 0.5          | 270     | 10.5 |
| 200x      | 100             | 1.7            | 137               | 18.5          | 137                   | 3.9          | 311     | 3.7  |
| Average   | 102             |                | 123               |               | 136                   |              | 277     |      |
| Stated    | 200             |                | 200               |               | 200                   |              | 260     |      |
| Deviation | -49%            |                | -38%              |               | -32%                  |              | 6%      |      |
|           |                 |                |                   |               |                       |              |         |      |
| The ta    | able abo<br>Con | ve is<br>npone | a sumi<br>ent A a | mary<br>s the | of the re<br>calibrar | esult<br>nt. | s using |      |

















| o contribut       | e to these conco                                                         |              |                                                                                                                     |                                                 |                                                                                  |
|-------------------|--------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|
|                   |                                                                          | rdance study | y summaries, <u>click here</u> .                                                                                    |                                                 |                                                                                  |
| Locus             | STR Kits//<br>Compared                                                   | Assays<br>I  | Results                                                                                                             | Frequency of Primer<br>Binding Site<br>Mutation | Source                                                                           |
| CSF1PO            | <u>MiniFiler</u> v<br><u>PP16</u>                                        | rs ID vs     | MF: 11,11 and ID: 11,11.1<br>One base insertion in Identifiler<br>amplicon outside of MiniFiler and<br>PP16 primers | 1/1308                                          | Hill et al. (2007)                                                               |
| CSF1PO            | PP16 vs CO                                                               | Ofiler       | Loss of allele 14 with COfiler; fine                                                                                | 2/1537                                          | Budowle st al. (2001)                                                            |
|                   | 🙀 🖗 💋 STR Fact Shee                                                      | etCSF1PO     | 9                                                                                                                   |                                                 |                                                                                  |
| FGA               | CSF1PO                                                                   |              | AmpF/STR® MiniFiler                                                                                                 | rm                                              | Cotton st al. (2000)                                                             |
| FGA<br>FGA        | CSF1PO<br>Other Names                                                    | 100 ba       | AmpF/STR® MiniFiler                                                                                                 | 100 bp                                          | Cotton st al. (2000)<br>Budowle and Sprecher<br>(2001)                           |
| FGA<br>FGA<br>FGA | CSF1PO<br>Other Names<br>CSF<br>UmSTB: 126169                            | 100 bp       | AmpF/STR® MiniFiler                                                                                                 | 400 bp<br>2055                                  | Cotton et al. (2000)<br>Budowle and Sprecher<br>(2001)<br>Delamoye et al. (2004) |
| FGA<br>FGA<br>FGA | CSF1PO<br>Other Names<br>CSF<br>UmSTS 156169<br>Repeat: [AGAT] = GenBack | 100 bp       | AmpF/STR® MiniFiler<br>200 bp 000 bp<br>117 075820                                                                  | TRANSPORT                                       | Cotton et al. (2000)<br>Budowle and Sprecher<br>(2001)<br>Delamoye et al. (2004) |





| TECHNICAL NOTE                                                                                                                                                                                         | J<br>Available              | Forensic Sci, .<br>doi: 10.1111/<br>e online at: ww | July 2007, Vo<br>j.1556-4029.20<br>w.blackwell-s | l. 52, No. 4<br>07.00491.x<br>ynergy.com |                       |                          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------|-----------------------|--------------------------|-------|
| Carolyn R. Hill, <sup>1</sup> M.S.; Margaret C. Kline, <sup>1</sup> M.S.; Julio J. Mulero, <sup>2</sup><br>Chien-Wei Chang, <sup>2</sup> Ph.D.; Lori K. Hennessy, <sup>2</sup> Ph.D.; and John M. Buta | Ph.D<br>er, <sup>1</sup> Pl | .; Robert<br>h.D.                                   | E. Lagacé                                        | 5, <sup>2</sup> B.A.;                    |                       |                          |       |
| Concordance Study Between the AmpF <sup>l</sup> STI                                                                                                                                                    | ₹®                          |                                                     |                                                  |                                          |                       |                          |       |
| MiniFiler <sup>™</sup> PCR Amplification Kit and                                                                                                                                                       | <b>—</b>                    |                                                     |                                                  |                                          |                       |                          |       |
| Conventional STR Typing Kits*                                                                                                                                                                          | <u> </u>                    | Locus                                               | Ethnicity                                        | Source                                   | MiniFiler             | Identifiler              | PP16  |
|                                                                                                                                                                                                        | 1                           | CSF1PO                                              | H                                                | IBB                                      | 11,11                 | 11, "11.1"               | 11,11 |
|                                                                                                                                                                                                        | 3                           | D138317                                             | н                                                | IBB                                      | 11,11                 | 9,11                     | 9,11  |
| 656 NIST U.S. population samples                                                                                                                                                                       | 4                           | D138317                                             | H                                                | IBB                                      | 13,13                 | 9,13                     | 9,13  |
| 4                                                                                                                                                                                                      | 6                           | D138317<br>D138317                                  | AA                                               | IBB                                      | 14,14                 | 9,14                     | 9,14  |
| Identifiler T 16                                                                                                                                                                                       | Ť                           | D13S317                                             | AA                                               | IBB                                      | 12,12                 | 8,12                     | 8,12  |
|                                                                                                                                                                                                        | 8                           | D138317                                             | AA                                               | IBB                                      | 11,11                 | 8,11                     | 8,11  |
|                                                                                                                                                                                                        | 10                          | D138317<br>D138317                                  | AA                                               | IBB                                      | 11,13                 | 9.11                     | 9.11  |
| miniSTRs 8                                                                                                                                                                                             | 11                          | D138317                                             | AA                                               | IBB                                      | 12,12                 | 9,12                     | 9,12  |
| (Ref #4 and #5)                                                                                                                                                                                        | 12                          | D138317                                             | AA                                               | DDC                                      | 10,10                 | 9,10                     | 0.12  |
|                                                                                                                                                                                                        | 14                          | D138317<br>D138317                                  | č                                                | DDC                                      | 12,12                 | 9,12                     | 9,12  |
|                                                                                                                                                                                                        | 15                          | D138317                                             | č                                                | DDC                                      | 8,8                   | 8,10                     |       |
| 481 father-son samples 171 ABI samples                                                                                                                                                                 | 16                          | D138317                                             | Α                                                | DDC                                      | 12,12                 | 10,12                    |       |
|                                                                                                                                                                                                        | 17                          | D168539                                             | AA                                               | DDC                                      | 9,9                   | 9,11                     | 11.12 |
| Identifiler                                                                                                                                                                                            | 19                          | D168539                                             | AA                                               | MLN                                      | 11,11                 | 9,11                     | 9,11  |
|                                                                                                                                                                                                        | 20                          | D16S539                                             | AA                                               | DDC                                      | 14,14                 | 11,14                    | 11,14 |
| NIST Identifiler data Ohio U miniSTR data MiniFiler kit                                                                                                                                                | 21                          | D168539                                             | AA                                               | DDC                                      | 9,9                   | 9,11                     | 9,11  |
| 210 220 220 240 25 100 110 120 150 14 100 110 120 100                                                                                                                                                  | 22                          | D168539                                             | AA                                               | DDC                                      | 12,12                 | 11,13                    |       |
| 0136317 D136317 D136317                                                                                                                                                                                | 24                          | D168539                                             | AA                                               | DDC                                      | 12,12                 | 11,12                    |       |
| Fee Fee                                                                                                                                                                                                | 25                          | D168539                                             | AA                                               | DDC                                      | 9,9                   | 9,12                     |       |
|                                                                                                                                                                                                        | 26<br>27                    | D168539<br>D18851                                   | A<br>H                                           | ABI<br>IBB                               | 11,11<br>13,15        | 10,11<br>15,15           | 13,15 |
| Hill, C.R., Kline, M.C., Mulero, J.J., Lagace, R.E., Chang, CW., He between the AmpFISTR MiniFiler PCR Amplification Kit and conven                                                                    | nness<br>tional             | sy, L.K., B<br>STR typin                            | utler, J.M.<br>ng kits. <i>J.</i>                | (2007)<br>Forensia                       | Concorda<br>Sci. 52(4 | nce study<br>): 870-873. |       |









http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Aren't the Current STR Loci Good Enough?

- Depends on the question being asked...
- For general forensic matching of evidence to suspect, the 13 CODIS STR loci are sufficient
- For other human identity/relationship testing questions, additional autosomal loci can be beneficial or even necessary











- · Genomic position
  - Adequate spacing from other (and current) loci to enable product rule use with autosomal markers
- Avoid known disease genes or linkage
  - To protect privacy concerns
- Polymorphic content (high heterozygosity)
  - More variable markers mean less can be used to reach desired rarity in full profile

























http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm



| Relationship Examined                 | <b>15 STRs</b><br>(Identifiler, ID15) | ID15 <b>+ Autoplex 22</b><br>STRs <b>= 37 loci</b> (A37) |
|---------------------------------------|---------------------------------------|----------------------------------------------------------|
| Mother/Child* (*with single mutation) | 0.214                                 | 5,200,000<br>Extra loci help                             |
| Siblings                              | 477                                   | 113,000<br>Extra loci help                               |
| Uncle/Nephew                          | 824                                   | 247,000<br>Extra loci help                               |
| Cousins                               | 0.45                                  | 2.25                                                     |
| Grandparents/<br>Grandchildren        | 0.53                                  | 1.42                                                     |

**Conclusions:** Longer distance multi-generational questions cannot usually be solved with additional autosomal STRs...























