Emerging Topics: Rapid PCR/DNA Typing and Ultra High-Throughput Sequencing for HID applications Peter M. Vallone, PhD Applied Genetics Group National Institute of Standards and Technology Life Technologies HID Professional

Services Meeting February 26, 2013 Frederick, MD

Outline

- Rapid PCR Protocols
- Rapid STR Typing Workflows
- Integrated Rapid DNA Instruments
- Ultra High-Throughput Sequencing (NGS)

Rapid PCR Applications

- · Faster sample-to-answer
 - Successful rapid PCR cycling reduces STR workflow times (less than 2 hours in the laboratory)
 - Single source reference and databasing samples
- Increased throughput (more runs per day)
- Integrated platforms for forensics and biometrics
 Rapid DNA instruments (swab in → answer out)

Thermal Cycling Times for Commercial STR Kits									
Year	Run on a 9700 thermal cycler	Hot start	Time per cycle	Cycles	Post soak	Total time			
1997/98	Profiler Plus/Cofiler	11 min	3 min	28	60 min	2:52			
1999	SGM Plus	11 min	3 min	28	45 min	2:53			
2000	PowerPlex 16	12 min	1 min 45 s	32	30 min	3:00			
2001	Identifiler	11 min	3 min	28	60 min	2:58			
2003	PowerPlex Y	12 min	1 min 45 s	32	30 min	3:18			
2004	Yfiler	11 min	3 min	30	80 min	2:45			
2007	PowerPlex S5	2 min	4 min	30	45 min	3:21			
2007	minifiler	11 min	3 min 20 s	30	45 min	3:16			
2009	ESI 16, 17 ESX 16,17	2 min	4 min	30	45 min	3:22			
2009	PowerPlex 16 HS	2 min	1 min 45 s	32	30 min	2:42			
2009	NGM	11 min	3 min 20 s	29	10 min	2:33			
2009	Identifler Direct	11 min	3 min	26	25 min	2:34			
2010	Idenfiler Plus	11 min	3 min 20 s	28	10 min	2:18			
2011	PowerPlex 18D	2 min	1 min 10s	27	20 min	1:25			
2012	NGM Express (direct)	1 min	48 s	26	5 min	0:45			
2012	PowerPlex 21	1 min	1 min 40 s	30	10 min	1:23			
2012	PowerPlex Y23	2 min	1 min 40 s	30	20 min	1:33			
2012	PowerPlex Fusion	1 min	1 min 40 s	30	10 min	1:24			
2012	GlobalFiler Express (direct)	1 min	33 s	26	8 min	0:40			

DNA Polymerases AmpliTaq Gold® is typically used - Heat activated (avoid nonspecific PCR products)

- Takara SpeedSTAR™ HS DNA Polymerase
 - Extension times of 100 bp/s are possible (compared to 20 bp/s for other polymerases)
 - Hot-start formulation is antibody mediated

.

- Qiagen QIAGEN Fast Cycling PCR Kit
- New England Biolabs/Finnzymes
 Phusion and Phire DNA
 Polymerases
 Oregon Contemporation - Q5
- KAPA Biosystems

 KAPA2G Fast PCR Kits
- Biotium – Cheetah[™] Taq
- Fermentas - PyroStart Master Mix
- EMD Millipore
 KOD DNA Polymerse

DNA Polymerase Characteristics

Why are cycling times decreasing?

- Accuracy (geometric selection)
- Proofreading (3' 5' exonuclease activity)

 Processivity: the number of nucleotides incorporated before dissociation

min	Cycler	Effective Heating/Cooling deg/s
36	GeneAmp 9700	1.6
19	Mastercycler Pro S	6.8
36	Rotor-Gene Q	1.6
22	SmartCycler	4.4
17	Philisa	10.9
30	Piko	2.2
22	SpeedCycler ²	4.4
17	Palm PCR	10.9

Comparative Throughput (Cycling)										
	#	3 step Fastest Cycling	2 step Fastest Cycling	Runs to complete	3 step Total	2 step Total				
Cycler	samples	Time (min)	Time (min)	96 samples	min	min				
GeneAmp PCR System 9700	96	36	31	1	36	31				
Mastercycler Pro S	96	19	17	1	19	17				
Rotor-Gene Q	72	36	32	2	72	64				
SmartCycler	16	22	18	6	132	108				
Philisa	8	17	14	12	204	168				
Piko	96	30	26	1	30	26				
SpeedCycler ²	96	22	19	1	22	19				
Palm PCR	12	17	17	8	136	136				
 Varying characteristics of heating/cooling and tube (reaction vessel) Rotor-Gene Q and SmartCycler are real-time PCR instruments While cycling times may be rapid, the throughput in some cases is reduced from the standard 96-well format 										

٠

Experiments and PCR Conditions

- Develop a successful PCR protocols for each cycler with 2- and 3-step cycling conditions Time)
- Sensitivity study: 1 sample, 7 concentrations in duplicate; compare 2- and 3-step PCR protocols
- Rapid STR typing workflow example (less than 2 hours)
- 95 samples amplified on a 9700 cycler → compare 2- and 3step PCR protocols
- 1 X Takara PCR mastermix,
 1 U SpeedStar polymerase *Premix Ex Taq*[™] (Perfect Real Time)
- 10 μL total reaction volume in a thin walled tube (8-strip) or proprietary tube
- + 2 μL of Identifiler PCR primer mix
- ~1 ng of template DNA
- 2- and 3-step cycling conditions
- Separation and detection on a 3130xl or 3500/3500xl

1.00	970	0 data	2-st		rsus	3-ster		
	010	o uutu	2 01	op vo	1000	0 0.01	N = 9	5 sam
	Media	n PHR				% st	utter	
n	2-step	3-step				/0 30	2	
95 AMEL	0.937	0.935		Loous	Z-S Modian	мара	Modian	MADo
78 CSF1PO	0.871	0.904	<u>n</u>	Locus	Median	MADe	Median	MADe
71 D13S317	0.873	0.917	99	THU1	2.2	1.1	2.1	1.0
76 D16S539	0.875	0.909	115	IPOX	3.2	1.5	3.0	1.4
82 D18S51	0.887	0.899	109	D7S820	5.4	2.2	5.0	2.3
72 D19S433	0.914	0.929	96	D13S317	5.6	2.0	5.3	1.8
71 D21S11	0.893	0.894	75	CSF1PO	6.3	1.9	5.5	1.5
85 0251338	0.000	0.889	107	D16S539	7.1	2.5	6.8	2.2
70 D201350	0.000	0.000	92	D5S818	8.0	1.6	7.2	1.1
78 D331356	0.003	0.900	93	D8S1179	8.4	1.6	7.5	1.6
63 D55818	0.850	0.897	115	√WA	8.8	2.1	8.1	2.0
78 D7S820	0.903	0.907	133	D21S11	9.2	1.6	8.6	1.4
73 D8S1179	0.910	0.905	130	D18S51	9.3	2.8	8.6	2.2
80 FGA	0.884	0.908	129	FGA	9.5	1.5	8.7	2.4
60 TH01	0.940	0.910	101	D19S433	9.6	2.4	8.7	1.5
62 TPOX	0.919	0.930	85	D3S1358	10.6	2.1	9.4	1.9
77 vWA	0.880	0.893	112	D2S1338	10.0	2.3	10.8	2.1

PCR Artifacts (3-step only)									
Artifacts Observed	9700	Smart Cycler	Master Cycler Pro	Rotor-Gene	Streck Philisa				
D16 @ 287 bp	35	4	1	6	0				
D8 @ 121 bp	6	0	1	3	0				
D8 @ 174 bp	14	10	1	7	0				
TH01 @ 160 bp	28	2	1	11	0				
TH01 @ 168 bp	83	32	1	40	0				
TH01 @ 184 bp	59	19	0	25	0				
TPOX @ 219 bp	77	13	2	22	2				
Total # Artifacts	302	80	7	114	2				
N = 95 samples									
• THOL @ 184 is often covered/discuised by the base of the 0.3 allele neak									

· 50 RFU threshold used when identifying artifacts

Conclusions

- Successful protocols developed for 7/8 cyclers tested
 - 14 min PCR on Philisa cycler
- Continue work on Palm PCR and SpeedCycler²
 Under the stated conditions sensitivity is around
- 250-500 pg of template DNA
- 2-step PCR protocol:
 - Faster
 - Similar sensitivity compared to 3-step
 - Comparable RFUs; peak height balance and stutter
 - Fewer PCR artifacts
- Complete STR profiling in < 2 h (swab-to-answer)

Performance Testing Goals

- Testing of R-DNA platforms for baseline performance of concordance, reproducibility, and reliability
- Type similar sample sets on multiple instruments and from multiple vendors
- Results will help guide platform improvements and additional testing

Carry this out through an inter-laboratory study

Initial Goals

Performance Asessment

- Run 5-10 cartridges for baseline performance
 - Confirm that the instrument is operating
 - General level of genotyping success (hoping for greater than 80%)
- Run 50-80 samples for a performance testing (part of an inter-lab study)
 - Assess genotyping success
 - Additional CE metrics (peak balance, stutter, etc)

Running single-source reference samples

What will this data provide? High level

- · Is the correct profile obtained?
- Typing success
- Per lane, chip, overall
- Incorrect profiles
- Partial profiles
- Allele drop out
- Contamination
- General operational issues
 - Instrument/chip failures
 Hardware and software
 - Hardware and software

What will this data provide? Detailed-expert user; developer

- Electropherogram characteristics
 - Signal intensity
 - Peak balance (inter- and intra locus)
 - Stutter, PCR artifacts, adenylation
 - Sizing precision of peaks
- · Manual versus automated allele calls
 - Confirm optimal software allele calling parameters

Ultra high-throughput sequencing

Next Generation Sequencing Ultra High-Throughput Sequencing

- Going in depth into STR loci and beyond – STRs are useful for legacy (databases)
 - Millions of bases of sequence variants (SNPs)
- Opens up new human identity applications: complex kinship, biogeographical ancestry, externally visible traits, degraded samples?, mixtures?, other applications

Applications are currently being addressed by the forensic genetics community (Kayser and deKnijff 2011)

Next Generation Sequencing Ultra High-Throughput Sequencing

· Challenges

- Repeating sequences (STRs) and read lengths
- Sample requirements (10 ng to 5 µg)
- Cost and time per unit of information
- Data analysis (storage, assembly, interpretation)
- Policy, privacy, disease related markers
- Validation
- Standards/reference materials
 - Accuracy of sequence information
 - Errors, platform and bioinformatics-based bias

Multiplexing samples and reduce data set while maintaining quality coverage
Single sample – full genome coverage

	Multi	plexing	ı samp	les and	l reduc	e data	set whi	le mair	ntaining	g qualit	y covei	age
ŧ	1	9	17	25	33	41	49	57	65	73	81	89
ime	2	10	18	26	34	42	50	58	66	74	82	90
be	3	11	19	27	35	43	51	59	67	75	83	91
Se	4	12	20	28	36	44	52	60	68	76	84	92
g	5	13	21	29	37	45	53	61	69	77	85	93
gle	6	6 14 22 30 38 46 54		62	70	78	86	94				
A sin	7	15	23	31 39 47 55			63	71	79	87	95	
1	8 16 24 32 40 48 56								72	80	88	96
 96 samples, high depth coverage of the forensically relevant markers 100s, 1000s, 500k, 1M per sample STRs and SNPs for one-to-one matching Ancestry markers (X, Y, mito, autosomal) Phenotypic markers (eye color, hair color, etc) Vineshig dividence 												
•	Kinship (linked and unlinked markers) Other If possible, avoid disease related markers							fore	sample nsically	s and s y releva	sequen ant info	cing rmation

NIST assessment of NGS

- Starting with mitochondrial DNA analysis – Simple 16.5 kb genome, compare to Sanger data
- SRM 2392 (CHR, 9947A) and 2392-I (HL-60)
- Plus 4 additional 'challenging' NIST pop samples (maximum differences from rCRS)

Initial Approaches

- To guide future purchasing decisions pilot studies were performed on 3 platforms
 - Life Technologies PGM (April May 2012)
 - Edge Biosystems outsourced library prep and sequencing
 Illumina HiSeq (June August 2012)
 - Beckman-Coulter Genomics outsourced library prep and sequencing
 - Life Technologies SOLiD (June July 2012)
 - In-house collaboration with NGS group at NIST

Niels Morling's lab in Copenhagen has shared 454 results for SRM 2392

Initial Approaches

Life Technologies PGM instrument was installed at NIST in September 2012

- Completed instrument training Sept 2012
- Initial run on PGM Nov 2012
- Second run just completed
- · Plan to obtain an Illumina MiSeq in 2013

Goals

- To compare the sequencing results of each platform to Sanger sequence (as found in the SRM certificate)
 Identify any errors, low level heteroplasmy (mixtures), platform specific bias
 - apoono bias
- Obtain experience with:
 - NGS library preparation
 - Data analysis (general workflow and mito specific)
 Outsourcing sequencing
- Compare data from the platforms
- Which is the most accurate (for mito)
 - Platform and informatics bias

Future Directions

- · Expand work with PGM and MiSeq platforms
- Sequence SRM 2391c alleles?
- Assess NGS software packages
 GATK, NextGene, CLC bio, Sequencher, ?

Thank you for your attention!

Questions?

Peter.Vallone@nist.gov (1-301-975-4872)

Acknowledgements

Erica Butts - Rapid STR Typing Protocols Kevin Kiesler – NGS work Dave Duewer – Data analysis software (stutter, peak height ratios, multiplex balance)

Outside funding agencies: FBI - Evaluation of Forensic DNA Typing as a Biometric Tool NIJ – Interagency Agreement with the Office of Law Enforcement Standards