

Forensic Applications of Insertion-Deletion (InDel) Markers

Peter M. Vallone Ph.D. Group Leader, Applied Genetics Group National Institue of Stanards and Technology (NIST) Gaithersburg, MD

Outline

- Forensic Markers (STRs, SNPs, InDels)
- Typing SNPs and InDels
- 30 and 38plex InDel Assays
 - Characterizing assay performance
 - Allele frequencies for U.S. population samples

Forensic Markers

- Length Variation
 - short tandem repeats (STRs)

7	ŧ		<u>88</u>	<u>60</u>	4	
-		1	Ġ ġ	4	66	
1		ġ	ė	đđ	* *	
#	4		66			

CTAGTCGT(GATA)(GATA)(GATA)GCGATCGT

Core STR Loci in national database

• Excellent for 1-to-1 matching

- PCR product sizes range from 100-500bp
- Commercial multiplex PCR kits (Promega, Life Tech, Qiagen)

Forensic Markers

- Sequence Variation
 - Single nucleotide polymorphisms (SNPs)

GCTAGTCGATGCTC(G/A)GCGTATGCTGTAGC

Length Variation
 Insertions-deletions (InDels)
 <u>GCTAGTCGATGCTC+GCGTATGCTGTAGC</u>
 <u>GCTAGTCGATGCTC(N_x)GCGTATGCTGTAGC</u>

Typically biallelic

InDels

Why are we interested in using InDels?

- What are the benefits?
- What are the challenges?

InDels

Forensic Issues/Questions

- How many InDels = 13 to 15 STR loci?
- Multiplexing (25-50plex < 1 ng DNA)
- Databases (core loci legacy concerns)
- Platforms for InDel typing? Kits?
- Unique interpretation issues <u>mixtures</u>
- Validation
- Sensitivity
- Cost

InDels

Advantages/Benefits

- Small PCR amplicon sizes perform better with degraded samples
- Lower mutation rate compared with STRs - (10⁻⁸ vs. 10⁻³)
- Abundant in the human genome (2 x 10⁶)
- Can provide alternative information to STRs – (identity, ancestry, lineage)
- Fragment analysis typing provides a familiar workflow to STRs

InDels

Limitations/Challenges

- Only one commercial kit (Qiagen DIPplex)
- InDels are not currently represented in national DNA databases
 - No widely established core loci
- Mixture resolution issues/interpretation
- Larger multiplex PCR assays

Forensic InDel Literature 2012-2013

- anel to study biogeographic ancestry. Zaumsegel D, Rothschild MA, Sch A 21 marker insertion deletion polymorphism Forensic Sci Int Genet. 2013 Feb;7(2):305-12.
- Ferensics in the Genet. 2013 February 2013 65-12. Population genetics and 30 automation lides in Central Spann and the Basque Country populations. Martin P, Garcia O, Henrichs B, Yurnebaux J, Paunte A, Johnson M, Sharoman K, Sharoma

- mortem material. Manis F, Caladia A, Prezira E, Sako J, Amorin A, Carvaho ET, Guarnão L. Forenis Sci Int Genet. 2012 Sept3(5):563:41. Straightforward inference of ancestra yand admixater poportorism torbuga) nacestry-informative nexterion deletion multiplexing. Prezira R, Philips C, Printo N, Sentos C, do Santos SE, Amorin A, Carvacedo A, Guannia L. PLos Dne. 2012;7(1):2584. A validation study of the Giagen Investigation DiPlere⁴ KL, an INDC-based assay for human identification. LaRue BL, G *e J*, King JL, Badowle B. Int J Legal Med. 2012;28:2124);2364. Deplation of the new innertion-deletion polymorphism kL and InDC-based assay for human identification. LaRue BL, G *e J*, King JL, Badowle A. Intri Legal Med. 2012;28:2141-57. Application of the new innertion-deletion polymorphism kL for formaci. dentification and parentage testing on the Czech population. Zakova A, Horinek A, Kehröllow V, Korabecna M, Int J Legal Med. 2013 Jan: 2717[1]:7:10. Zakova A, Horinek A, Kehröllow J, Korabecna M, Int J Legal Med. 2013 Jan: 2717[1]:7:10. Carracedo A, Larea WM, Garono L, Vallo CM. Forencis C Lin Grener. 2012; Jul (54):459-76. Commonton Jones D, Vallo CM. Forencis C Lin Grener. 2012; Jul (54):459-76. Torencis O Int General Control (1):46(1):499-910. Torping d Solt amgleophic loci In Finnih and Sormal populations. Networen AM, Ralo JJL, Hendman M, Sajantik A, Forencis Coi Int Genera. 2012; Jul (46):499-90. Typing d 2013 materical (46):469-910. Typing d 2013 materical (46):469-910.
- Foreins C. unit Super, 2012 Directophysers 102. Typing of 20 interformed folletions in Danes using the first commercial indel kit—Mentype® DPplez, Friis SL, Børsting C, Rockenbauer E, Pouben L, Fedslund ST, Tomas C, Morling N, Forensic Sci Int Genet. 2012 Marc[32]:e72–4. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR. Preriar R, Pereira V, Gomes I, Tomas C, Moring N, America A, Patsa MJ, Carraceto A, Guanião L, Int Llegal Med. 2012 Jan.22(21):57-105.
- c, woring w, amorin A, rata km, utracebo A, Guineo L. Ini Legal web. 2012 Am2(2012):47:100 Selection 023 bij(k) informative incl/B matters for humani definitions and paterinity analysis in Chinese Han population by the SWPes genophing system: U.C. Zhang S, Li L, Chen J, Liv J, Zhao S. McI Biol Rep. 2012 Mar;39(3):3143-52. Intertion-deletion polymorphisms-utilization on forensic analysis. da Costa Francez PA, Rodrigues EM, de Velasco AM, dos Santos SE. In Legal Med. 2012 Jul;22(4):591-6.

InDel Work at NIST

- Type NIST U.S. population samples (n > 700)
 Commercial DIPplex kit
 - HID-38plex assay (from Portugal)
- Generate allele frequencies for U.S. population groups, evaluate random match probabilities
- Evaluate performance with degraded samples
- Characterization of 'off ladder' alleles

 DIPplex kit

Allele Fi	reque	ency A	Analys	sis
 We performed population all typing the NIST collection of 7 	ele frequenc 712 U.S. pop	y analysis wi ulation samp	th both InDe les.	l multiplexes
Samples from the four repres been used. All of them indepe	entative hun endent and o	nan groups o of self-declar	f the U.S. po ed ancestry.	pulation have
 262 African Americans 260 U.S. Caucasians 140 U.S. Hispanics 50 U.S. Asians 	Al pop	lele frequer pulation gro	ncies for each up were ge the markers.	ch U.S. nerated the following
RMP values were calculated.				
	U.S. Cauc	U.S. Asian	U.S. Hisp	Af-Am
Mean DIPplex RMP	1.86E-13	4.67E-11	4.88E-13	5.88E-12
Mean HID-38plex RMP	3.67E-15	5.11E-14	1.47E-15	4.74E-15
Mean Combined RMP*	6.79E-28	2.43E-24	7.20E-28	2.54E-26

Forensic performance of two insertion-deletion marker assays. Fondevila M, Phillips C, Santos C, Pereira R, Gusmão L, Carracedo A, Butler JM, Lareu MV, Vallone PM. Int J Legal Med. 2012 Sep;126(5):725-37.

	6	loci from	M each InDe	arkers separated I assay that are l	by l ess tl	ess ti han 1	han 10 N LO Mb fro	1b om a core S	TR locus.
	CHR	STR	InDel	Physical Distance		CHR	STR	InDel	Physical Distance
	5	CSF1PO	r\$1305056	6,158,834		7	D7\$820	rs2307978	311,150
	6	SE33	r\$2307652	8,521,842	EX	11	TH01	rs10688868	1,890,820
	8	D8S1179	r\$3081400	5,959,018	đ	12	D125391	rs1610919	2,352,263
	15	PentaE	r\$2307433	7,509,680	38	12	VWA	rs1610919	8,838,263
	22	D22S1045	r\$6481	1,747,100	6	16	D165539	rs2067208	1,804,212
i	22	D22S1045	r\$16363	39,169	Ξ	21	D21511	rs35605984	4,919,264
V C C	Vhe ont ore	n conte ained i STR lo	emplati n these ci, we sh	ng the possib InDel marker Tould keep in	ility rs sy mi	/ of /ste nd t	combi ms wit hat th	ning the h each c e proxim	information other or with hity between

	All pr	ofiles shown so	caled to 2000 RF	Us		
l le	lentifiler -	– 6 STF	R marke	ers out o	f 16	
120	****		20		***	179
C	8					
1		-	••	•••	+	
	-				E	Mark Sample for Deletio
		210	250	280	380	
50						
55						
13	• • • •	1	• • • •	• • •		• •
					0	Mark Sample for Deletio
1 10		210	290	290	580	
D19	1/1//					
015	••••					
54 (62)						
					0	Hark Sample for Deletio
1 19		210	210	290	380	
Amel	D5					
X 20						

Artificially Degraded D	NA Assay
-------------------------	----------

With the number of observed alleles on each kit, we obtained the following RMP values $% \mathcal{M}(\mathcal{M})$

Assay	Exp. Alleles	Obs. Alleles	Loci total	Amp. Loci	RMP
Identifiler	10	5	15	5	n/a
Minifiler	16	16	9	9	2.89 e ⁻¹²
DIPplex	49	49	30	30	4.77 e ⁻¹⁴
HID-38plex	43	43	38	33	1.03 e ⁻¹⁴

- Application of short amplicon markers such as DIPplex and Minifiler to challenging DNA samples would be of great interest for casework
- In case of limited amount of sample, InDel marker amplification should be considered versus other short amplicon assays, such as minifiler -- unless core STRs are needed
- For future sample preparation, increased shearing times could be tried in order to achieve a further level of fragmentation

bp (ATTA) deletion located 10 bases downstream the main InDel site. This is a referenced InDel on dbSNP database as rs11573892.

Observed fr	equency o	of the un	reported	variatio
		Рори	lation	
Frequency	European	African	Hispanic	Asian
D97 inbalance	0,044	0,22	0,062	0,06
D83 inbalance	0	0,08	0,015	0
D99 OL allele	0	0,0766	0,0156	0
DR4 OL allala	0	0.0443	0	0
 D84 OL allele		0,0445		0

Summary

- InDel genotyping can be applied to forensic DNA typing as complement to STR typing
 - Simpler workflow compared to traditional SNP typing
 Deforme well with highly degraded complete
 - Performs well with highly degraded samples
- Population frequency data for U.S. population samples have been calculated and published
- A successful protocol for artificial DNA fragmentation mimicking challenging DNA samples has been developed.
 - A comparison between long and short ampliform amplification assays has been carried out
 InDel assays have proven to be more informative for these samples
- Unreported variation on Qiagen's DIPplex Investigator kit have been characterized
 The characterization of such mobility variants would contribute to raise the informative power of the test

Acknowledgements

- Qiagen for providing early access to DIPplex kits
- Margaret Kline and Becky Hill (NIST) for assistance with allele sequencing
- Jennifer McDaniel NIST) for assistance with the COVARIS system
- Carla Santos (USC) for providing HID-38plex primer mix
- FBI Lab and Biometrics Center of Excellence for funding

Thanks for your attention!

Questions?

peter.vallone@nist.gov 1-301-975-4872