

Peter Vallone and Margaret Kline Applied Genetics Group U.S. National Institute of Standards and Technology FBI Laboratory Seminars May 23, 2013 Quantico, VA

What is SRM 2372 Human DNA Quantitation Standard?

Genomic DNA prepared to be double-stranded DNA (dsDNA)

2372

Component A: Single-source male Component B: Multi-source female Component C: Multi-source male/female mixture

All solubilized in TE⁻⁴ buffer (10mM Tris, 0.1 mM EDTA, pH 8.0)

Certified for spectroscopic traceability in units of decadic attenuance, D_{10} . The D_{10} scale is a measure of absorbance and is traceable to the unit 1.

The conventional conversion factor for aqueous dsDNA is: 1.0 D_{10} at 260 nm = 50 ng/µL DNA

In March 2012, SRM 2372 was taken off the market and work performed to re-certify the materials

Why Was SRM 2372 Taken Off the Market?

- During measurement of the DNA samples to verify stability of certified values we observed that the UV absorbance values for the samples had changed significantly
 - Not due to degradation of the DNA but rather unraveling or opening up of the DNA strands in the TE⁻⁴ buffer (singlestranded DNA absorbs more UV light than double-stranded DNA)
 - SRM 2372 is certified for UV absorbance (decadic attenuance)
 One application of this SRM is for calibration of UV spectrophometers
- The sample changes over time that impact UV absorbance do not appear to affect qPCR sample performance

Convert Apparent Absorbance to ng/µL

 Conventional concentration values are derived from the assertion that a solution of ssDNA with an absorbance of 1.0 at 260 nm and a pathlength of 1.0 cm has a DNA mass concentration of 37 µg/mL (37 ng/µL)

Parameter	Α	В	С				
2012 DNA Mass Concentration	57	61	59				
2007 DNA Mass Concentration	52.4	53.6	54.3				
Theoretical difference, %	9 %	14 %	9 %				
Theoretical difference, Ct	0.12 cycle	0.19 cycle	0.12 cycle				
Difference between the original and re-certified values is within the noise of the ass							
Difference between the original and re-certifie	ed values is v	vithin the noi	se of the ass				
Difference between the original and re-certifie SRM 2372 back on Sale	ed values is v December 3	vithin the noi 1, 2012	se of the ass				

Do we measure ng/µL or amplifiable targets or <u>accessible</u> amplifiable targets?

- qPCR methods have evolved to try to establish the link between "quality/quantity" of the DNA extract and the resulting STR profiles
- The STR profiles generated are based on the accessible amplifiable targets
- We propose using digital PCR (dPCR) to directly assess the number of accessible amplifiable targets
 This measurement technique has been shown to work well with plasmid DNA
 - Not yet demonstrated to work with human genomic DNA

Digital PCR (dPCR) Overview

- Combination of:
 - Limiting dilution
 - End point PCR
 - Poisson statistics (no standard curve required)
- Need to dilute and partition templates so molecules can be amplified individually
 - Microfluidics (Fluidigm)
 - Emulsion/droplet PCR (Bio-Rad)

Digital PCR (dPCR) Overview

- Estimates the number of accessible amplifiable targets without an external calibrant
- Samples are split into 100s to 1000s of reaction chambers
 - Fluidigm 12.765 Digital Array
 - 765 chambers x 12 panels = 9180 dPCR reactions
- The count of the number of chambers containing at least 1 target can be used to estimate the total number of targets in a sample

on binomial statistics

http://www.nist.gov/mml/bmd/genetics/upload/Digital-PCR-Ross-Haynes.pdf

gital PCR Jant is based on Poisson
uant is based on Poisson
e. calibrant free)
mples must be within a nge of concentrations
ew technology aining acceptance
irrently more expensive
naller dynamic range

dPCR is Planned as the Next Certification Method

- The next generation of SRM 2372 will be certified for "copy/target number" not UV absorbance
 _ dPCR assays require optimization to improve measurement accuracy and reproducibility
- It is important to realize that there is no one human genomic material that will have the same "target number" for all assays; lots of variability is being discovered at the genome level in terms of copy number variants and chromosomal rearrangements

Ta	ble 6: CN	assay and	CNgenom	Estimat	tes, dsDN	A Temp	lates/µL
Measurand	Compon	u(CN)	Compo	u(CN)	Compor	u(CN)	
DNA]pesata	19100	800	19600	600	16000	800	
DNAlposate	21100	1700	20500	800	10400	800	
DNA]D1451434	23200	1200	22400	500	24900	1800	
DNA]ouantifiler	18500	1300	18600	200	19200	1100	
NAL	20500	1000	20300	700	17600	3000	

dPCR	DNA Co	once	ntra	atio	n E	Estir	nates
	Table 5: [DNA]ass	ay and [DN	A]genome	Estima	ites, ng	/μL	
Measurand	$\overline{X} u(\overline{X}) P$	$\overline{X} u(\overline{X})$	P	Z n	$u(\bar{X})$	P	
[DNA]D85474	57.2 2.3	58.9 1.	7	48.1	2.4	_	
DNA]D952157	63.2 5.0	61.6 2.5	5	31.2	2.5		
[DNA]D1451434	69.7 3.7	67.2 1.4	4	74.7	5.5		
g [DNA] _{Quantifiler}	55.6 3.9	55.9 0.5	5	57.7	3.3		
[DNA]Genome	61.4 3.0 0.13	60.9 2.2	2 0.02	52.9	9.0	0	
þ							
			Con	np A	Со	mp B	Comp C
2012 DNA Mass	Concentration	(ng/µL)	5	7	(61	59

Summary

- NIST SRM 2372 has been re-certified through forcing dsDNA to become ssDNA in order to improve the UV absorbance measurements
- qPCR measurements have not been significantly impacted by the new certified (and DNA concentration) values
- Digital PCR will be used to certify copy number for future DNA quantitation SRMs
- Quantitation is impacted by new qPCR targets and STR kit PCR buffer formulations
 - Insensitive qPCR assays may not accurately reflect ability of new, more sensitive STR kits to obtain results

