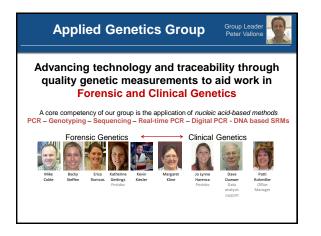
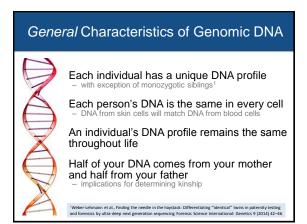
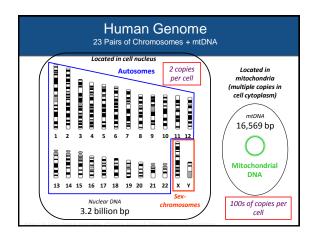
Human Identity Testing Using DNA

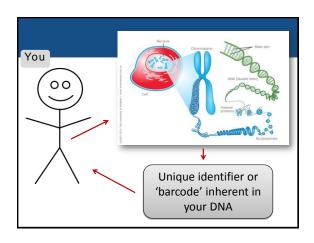

DOC Headquarters - Commerce Research Library 12 March 2015

Peter M. Vallone, Ph.D. Leader, Applied Genetics Group Biomolecular Measurement Division




Topics

- What is human identity testing?
 Aka 'Forensic DNA Testing'
- Common questions
- · NIST's role
- · The future of human identity testing



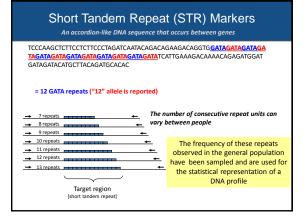
Human Identity Testing

- Probe subsets of genetic variation in order to differentiate between individuals
 – ≈13 to 24 regions in the human genome
- DNA typing must be done efficiently and reproducibly (information must hold up in court)
 Over 13 million profiles in the national FBI database¹
- Typically, we are not looking at genes little/no information about ancestry, predisposition to disease, or phenotypic information (facial features, eye color, height, hair color) is obtained → evolving

¹http://www.fbi.gov/about-us/lab/biometric-analysis/codis/codis-and-ndis-fact-sheet

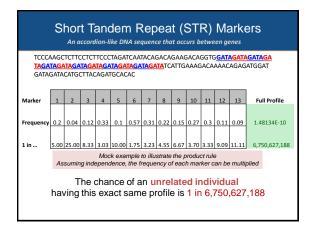
Applications of Human Identity Testing

- Forensic cases: matching suspect with evidence
- Paternity testing: identifying father
- Missing persons investigations
- · Military DNA "dog tag"
- National DNA database (FBI)
- · Mass disasters: accounting for remains
- · Historical investigations
- Genetic genealogy

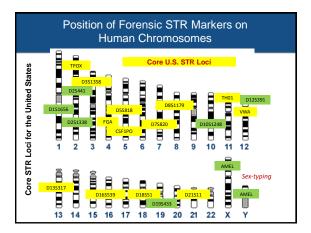

What Type of Genetic Variation?

•Sequence Variation

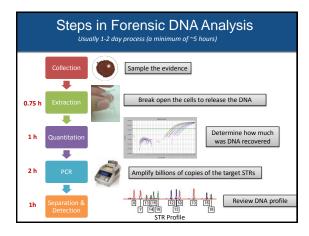
single nucleotide polymorphisms (SNPs) insertions/deletions <u>GCTAGTCGATGCTC[G/A]GCGTATGCTGTAGC</u>


•Length Variation

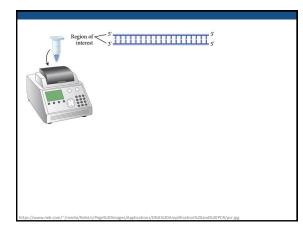
short tandem repeats (STRs) CTAGTCGT[GATA][GATA][GATA]GCGATCGT

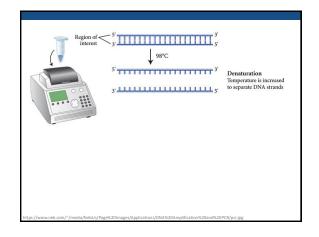


Short Tandem Repeat (STR) Markers An accordion-like DNA sequence that occurs between genes					
TCCCAAGCTCTTCCTCTTCCCTAGATCAATACAGAC TAGATAGATAGATAGATAGATAGATAGATAGATAGATAG					
Sampling 100 individuals	Times obser	ved Frequency	1 in		
→ 7 repeats ←	5	5%	20		
→ 8 repeats ←	12	12%	8.3		
→ 9 repeats ←	22	22%	4.5		
→ 10 repeats ←	32	32%	3.1		
→ 11 repeats ←	20	20%	5		
→ 12 repeats +	- 7	7%	14.3		
→ 13 repeats	← 2	2%	50		
	= 100	= 100%			
Target region [short tandem repeat]					









PCR

- Polymerase Chain Reaction
- A means to create billions of exact copies of a specific region of the genome

Region of 5 1 1 1 1 1 1 1 1 1 1 1 1 1	Denaturation Temperature is increased to separate DNA strands Annealing Temperature is decreased to allow primers to base pair to complementary DNA template

Region of $< \frac{5'}{3'}$ 98°C

5' Primer 3'

3.77747474

3'

Template DNA strands

Nascent < DNA strands

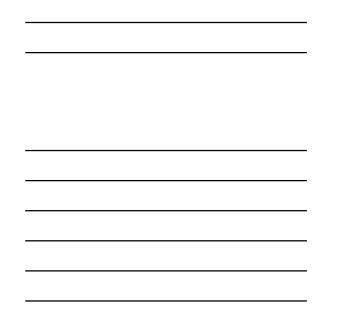
1

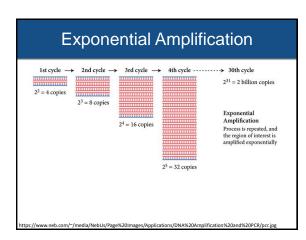
5

48 to 72°C

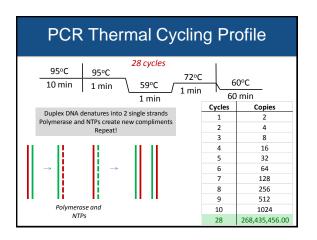
3' Primer 3' Primer

3' 68 to 72°C

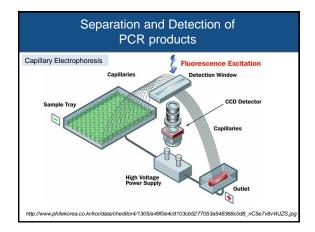

Denaturation Temperature is increased to separate DNA strands

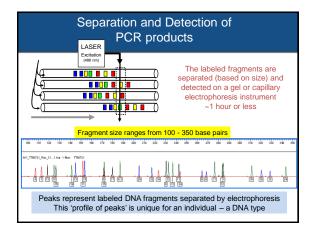

Annealing Temperature is decreased to allow primers to base pair to complementary DNA template

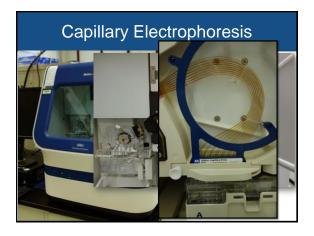
3 Extension Polymerase extends primer to form nascent DNA strand

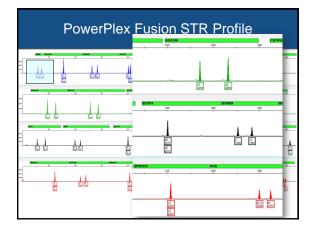

5'

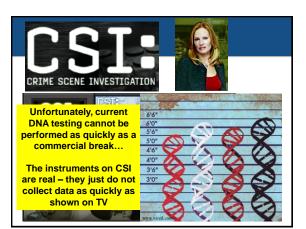
- 3 575777773°L

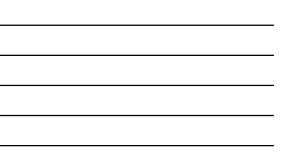




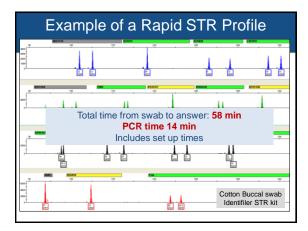


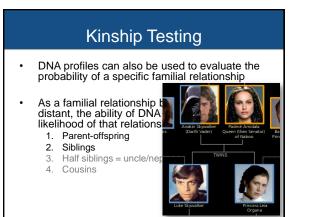


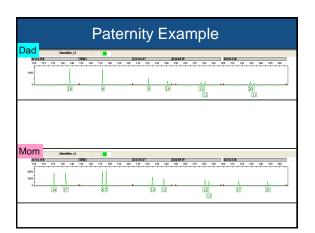


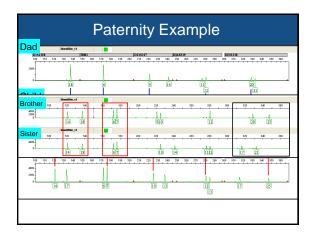


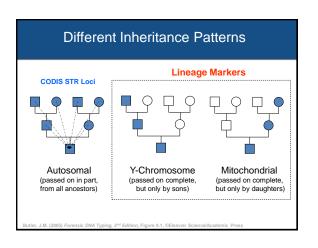
Amel D3S1358 D1S1656	{X,Y} {15,15} {11,13}	lex Fusion STR Kit
D2S441	{11,11.3}	Multiplying the frequency of each
D10S1248	{8,12}	., ,
D13S317	{11,12}	genotype at each
Penta E	{8,14}	locus gives us the
D16S539 D18S51	{9,12}	Random Match Probability
D18551 D2S1338	{15,18} {17.23}	-
CSF1PO	{8.11}	(RMP) of 7.81x10 ⁻³⁹
Penta D	{9,11}	for unrelated individuals
TH01	{6.9}	
VWA	{13,15}	
D21S11	{28,28}	The chance of an unrelated individual
D7S820	{8,11}	having this exact same profile is
D5S818	{9,10}	3
TPOX	{9,12}	1 in
DYS391	{10}	128,040,973,111,396,000,000,000,000,000
D8S1179	{15,15}	,000,000,000
D12S391 D19S433	{17,19}	,000,000,000
D195433 FGA	{13,13} {22.2,25}	
PGA D22S1045	{22.2,25} {16,17}	This test contains the FBI core STR markers

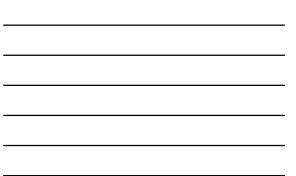


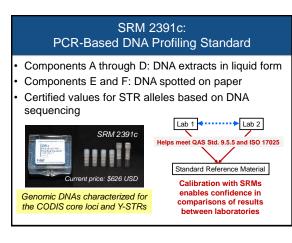

NIST and Rapid PCR

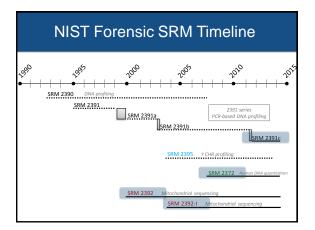



- Up until 2008 PCR amplification times required approximately 3 hours
- Utilizing new (faster) DNA polymerases and rapid PCR thermal cyclers we demonstrated results in 36 minutes
- Enabling faster commercial STR typing kits (40 min) and fully integrated 'Rapid DNA' typing instruments (swab to profile in < 2 hours)

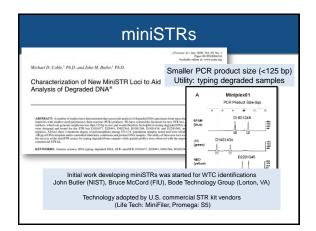




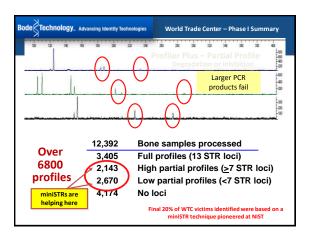

NIST's Role in Human Identity Testing

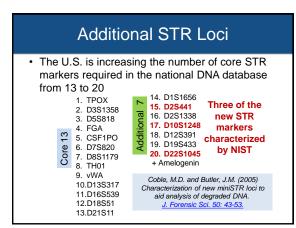

- Reference materials
 To ensure confidence in results
- Research
 New Technologies
- Training and Education

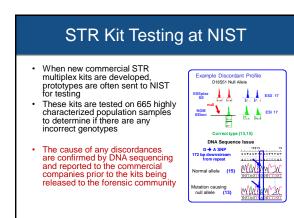
 Workshops, papers, talks

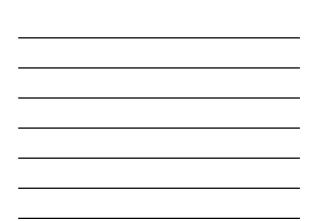

SRM 2391c: PCR-Based DNA Profiling Standard

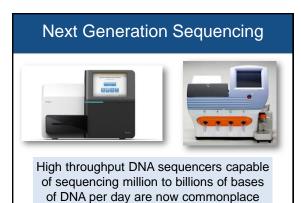

9.5.5 The laboratory shall check its DNA procedures annually or whenever substantial changes are made to a procedure against an appropriate and available **NIST standard reference material or standard traceable to a NIST standard.** http://www.fbi.gov/about-us/lab/biometric-analysis/codis/gas_testlabs

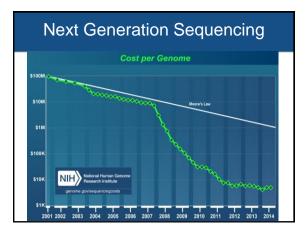




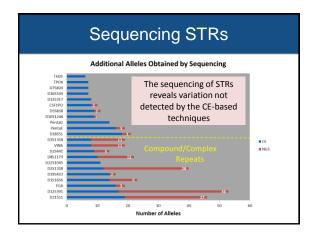


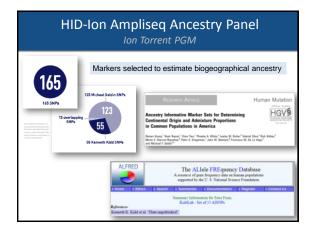

The Future of human identity testing


Rapid DNA


- Fully integrated instruments capable of generating a DNA profile
- · 'Swab in profile out' in less than 2 hours
- No special training required
- · Potential applications
 - Booking station 🥻
 - In the field
 - Border crossing

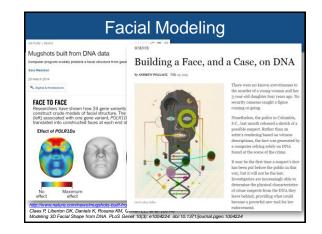
Non-forensic applications

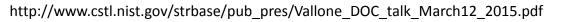

- · Clinical research
- Inherited disease
- Reproductive healthCancer gene fusion
- Cancer gene lusion
- Rare variants
- Pre-implantation (genetic screening)
- Transplant medicine (HLA)
- Microbiomics/Metagenomics
- Gene expression | RNA seq
- Public health
- Ancient DNANIPT (non-invasive prenatal testing)

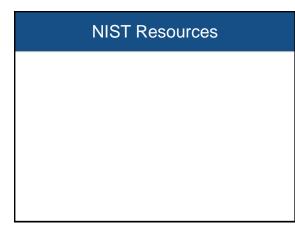

Use of NGS for forensic applications

- Forensically relevant markers (SNPs)

 newer human identity applications
 - biogeographical ancestry, externally visible traits, complex kinship
- Going in depth into STR loci and beyond – STRs are useful for legacy (databases)
 - SNPs within STRs identify 'sub-alleles'








	Ance	stry SNF	P NGS A	ssay	
	or: 392-11-101.Amp8501, Cuito 1-18710-39-042	West Afric	e = S277 can Self-ID l'Ivoire)	Sample tabric Allein Coverage data PDF regions	Downhaat CSV-29 Simple CSV He Downhael
Sample Table	(Statistics		
1915 Alders, 201 1916 Alders, 201 1917 Alders, 201 1918 Alders, 201 1919 Alders, 201 1917 Alders, 201 1917 Alders, 201 1917 Alders, 201 1917 Alders, 201 1919 Alders, 201 1919 Alders, 201 1919 Alders, 201 1919 Alders, 201					

