Application of Emerging Technologies at NIST

GenomeID Forum – Emerging Forensic Genomic Applications Center of Advanced Forensic DNA Analysis September 9, 2014 - Greenville, NC

Peter M. Vallone, Ph.D. Applied Genetics Group Biomolecular Measurement Division

Disclaimer

NIST Disclaimer: Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

Information presented does not necessarily represent the official position of the National Institute of Standards and Technology or the U.S. Department of Justice.

Our group receives or has received funding from the FBI Laboratory and the National Institute of Justice.

Current Characterization of Forensic SRMs

- 2391c PCR Based DNA profiling standard
 - · 68 STR markers (51 autosomal + 17 Y chromosome)
- STR repeat lengths (alleles) were certified using multiple (unique) PCR primer sets
- Sanger sequencing was only performed for loci without multiple PCR primer sets (only 10%)
- 2392 & 2392-I Mitochondrial DNA sequencing standard
- Entire mtGenome (≈16,569 bp) was certified by Sanger sequencing
- 2372 Human DNA Quantitation Standard
- UV absorbance (decadic attenuance) measurement

Goal: Characterize Existing Forensic SRMs with New and Emerging Technologies

- SRM 2391c: Certify sequence information for STR loci
- Sanger and NGS methods
- Supports adoption of NGS in forensic community
 Understand bias inherent to specific NGS platforms: chemistry and bioinformatics
- SRMs 2392 and 2392-I: confirm Sanger data with high coverage NGS methods
- Detect lower level heteroplasmies (<20 %)
- SRM 2372: certify concentration with an absolute PCRbased method
- · Digital PCR provides this capability

Certified, Reference & Information Values

Certified Value

- NIST has highest confidence in accuracy
- All known/suspected sources of bias investigated/taken into account
 Two or more methods e.g. Sanger sequencing AND
 genotyping with multiple primer sets

Reference Value

- Best estimate of true value
- All possible sources of bias NOT fully investigated by NIST
 Genotyping with only two sets of primers

Information Value

- Of interest and use to SRM user
- Insufficient information available to assess uncertainty of value
 Genotyping with only one set of primers

SRM 2372 DNA Quantitation Standard

- Used for calibrating DNA quantitation standards
 (gPCR ktis)
- Current stock: 31 month supply

- In the process of preparing SRM 2372a
- Characterize with dPCR versus UV absorbance

Digital PCR (dPCR) Overview

- A sample is partitioned so that individual nucleic acid targets within the sample are localized
- · Microfluidic (Fluidigm BioMark)
- Emulsion/droplet PCR (Bio-Rad QX100, RainDance)
- Each partition will contain a negative or positive PCR reaction
- Nucleic acid targets may be quantified by counting the regions that contain PCR end-product
 - A standard curve is not required

Sydes JP 4 all A4 (1993) "Quantitation of lagests to PCR by use of insting diation" (Exotechniques 13 (3): 444–449 Markins, D 4 all A7 (1997) Neukaliza case DPR with Tophics Networks Tealable, Acade Reservoir 25 (10): 1995-2004 Vagestein and Krister (1999) "Digital PCR", Proc Nail Acad Sci U S A, Bo (10): 5238–5241 Poll and Shin (2004) "Principle and againctions of digital PCR". Exert Re Nu No Daget 4(1): 41–47 Dressman et al. (2003). "Transforming single DNA molecules into fluorescent magnetic particles for detection and enumera variations". Proc Natl Acad Sci U S A 10(1): 8187–8222.

Validating a qPCR assay for dPCR

			A	Assay	Optim	ization				
	Z	-	Effect	BioRad QX100 Effect of annealing temperature on copy number estimate						
				ddPCR Concentration	6					
	100 90- 80-	<mark>90.2</mark> ¹	80.8 重	C	<mark>opies per</mark>	μL				
c(copies/µt.)	60- 50-			<mark>54.9</mark> 🔹						
Ch1 Con	+0				32.4 ×	25.7 .				
	20-	57°C	59°C	61°C	63°C	65°C				
N	•— =6 pe	1-25 (17) ACTB r sample	1:25 (19) ACT8	1:25 (61) ACTB Sample	1:25 (63) ACTB	1:25 (45) ACTB				

Design and validate multiple dPCR assays for certification of SRM 2372a

Convert copies/ μ L and calculate the DNA concentration as ng/ μ L:									
Assay	Chromosome	Average ng/µL	sd						
D6S474	6	56.3	1.2						
D9S2157	9	55.2	0.7						
HBB1	11	51.7	1.5						
D5S2500	5	51.7	0.9						
D14S1434	14	52.1	0.4						
2PR4	2	50.6	0.9						
22C3	22	50.0	1.2						
EIF5	2	49.0	0.3						
D1P32.3	1	39.7	0.8						
Average of all (except D1P32.3)		52.1	2.5						

· Chemistry and informatics related

NGS Support for mtDNA Analysis

- PGM & MiSeq analysis
- 5% SNP calling threshold
- Concordance across platforms
- Two heteroplasmies in two components, not in previous certificates
- Planned FSIG short communication
- Certificate update Late 2014

Degraded DNA / Sensitivity Study									
Assays	PGM IISNPs	MiniFiler	ldentiFiler Plus	GlobalFiler	DIPplex				
DEGRADED DNA SAMPLES									
50-250	х	х		х	х				
50-200	х	х		Х	Х				
50-150	х	х		Х	Х				
50-100	х	х		Х	Х				
50-75	х	х		Х	Х				
		SENSITIVIT	Y SAMPLES						
0.5 ng	х		х	Х	х				
0.1 ng	х		Х	Х	Х				
0.05 ng	Х		Х	Х	Х				

Degraded DNA Study Minifiler STR Kit									
Fragmented, size selected < 7	5 bp		. 9		ų	÷			
	_								
Fragmented, size selected < 1	00 bp								
· · · · ·						4			
Fragmented, size selected < 1	50 bp								
ф. н	· · · ·			· · · ·	4	4	. *		
	I			4.	11				
93	10 1		6.0	68	36				
Fragmented, size selected < z	оо вр 		7		4				
a h				1					
93 90		8 88	0.0	8.B	30		80		
Fragmented, size selected < 2	50 bp								
	i Ti Ti	l li					T		
		1 <u></u>	0.0	0.0	36		86		
Fragmented, non-size selecte	d								
Minifilar® a	malification (20 or	a) 25 ul reaction	2500v/ alactroph	oraric 1.2 M	for 8 reco		91 EL		

Sequencing STRs on the MiSeq

- Beta version of PowerSeq Auto System
- Promega 24plex STR kit (Doug Storts)
 NIST Promega Battelle collaboration
- NIST Promega Battelle collaboration
- Designed for use on NGS platforms
- Primers redesigned for NGS read lengths
- Protocol developed for Illumina MiSeq
- Ran SRM 2391c + 188 NIST pop samples
- Data analysis with STRait Razor
- Further parsing of data with custom Java tools

STRait Razor: A length-based forensic STR allele-calling tool for u with second generation sequencing data David H. Washaeet, David Lin, Kenner Harl, Ravi Jain, Carey Davis, Bobby Jai David H. Kimet, Brook Berlanderford

ROOM

SRM 2391c Component E

- D2S441
- Length-based (CE) homozygote 10,10
- Sanger and NGS Sequence data

 - Length-based homozygote, but sequence-based heterozygote

SRM 2391c Component E D13S317 Length-based (CE) heterozygote 8,12 Sanger heterozygote 8,'13' NGS Sequence data heterozygote 8,12 (STRait Razor data parsed with Java tools) Flanking/recognition seque

A -T SNP results in another TATC repeat

1	A	В	С	D	48	Locus	height ratio	1
1	Sample name	CSF1PO	CSF1PO	D1051	49	CSF1PO	0.683	19
2	A10-H-GT37900 S73 L001 R1 001.fastg.STRaitRazor	11	12		50	D10S1248	0.954	
3	A11-H-TT51422 S81 L001 R1 001.fastq.STRaitRazor	10	12		51	D125391	N/A	1
4	A12-H-ZT80786 S89 L001 R1 001.fastg.STRaitRazor	10	11		52	D135317	0.985	- 1
5	A2-C-UT57318_S9_L001_R1_001.fastq.STRaitRazor	11	13		53	D165539	0.961	2
6	A3-C-WT51362_S17_L001_R1_001.fastq.STRaitRazor	11	12		54	D18551	0.799	- 2
7	A4-C-WA29594_S25_L001_R1_001.fastq.STRaitRazor	11	12		55	D195433	0.983	2
8	A5-AA-JT51471_S33_L001_R1_001.fastq.STRaitRazor	10	13		56	D1S1656	0.845	- 1
9	A6-AA-OT05897_S41_L001_R1_001.fastq.STRaitRazor	12	13		57	D21511	0.941	2
10	A7-AA-PT84223_S49_L001_R1_001.fastq.STRaitRazor	12	12		58	D2251045	0.847	- 1
11	A8-AA-PT84232_S57_L001_R1_001.fastq.STRaitRazor	9	10		59	D251338	0.752	- 2
12	A9-H-GT37778_S65_L001_R1_001.fastq.STRaitRazor	10	12		61	D25441 D351358	N/A	2
13	B1-2391c-E_S2_L001_R1_001.fastq.STRaitRazor	10	11		62	D55818	N/A	2
14	B10-H-GT37913_S74_L001_R1_001.fastq.STRaitRazor	11	12		63	D75820	0.92	2
15	B11-H-TT51435_S82_L001_R1_001.fastq.STRaitRazor	9	12		64	D851179	0.925	2
16	B12-H-ZT80815_S90_L001_R1_001.fastq.STRaitRazor	10	13		65	FGA	0.989	1
17	B2-C-WT51342_S10_L001_R1_001.fastq.STRaitRazor	10	12		66	PentaD	0.935	1
18	B3-C-WT51373_S18_L001_R1_001.fastq.STRaitRazor	10	12		67	PentaE	N/A	2
19	B4-C-WA29612_S26_L001_R1_001.fastq.STRaitRazor	11	12		68	TH01	N/A	2
20	B5-AA-JT51499_S34_L001_R1_001.fastq.STRaitRazor	11	12		69	TPOX	N/A	1
					70	VWA	0.787	- 1

SRM 2391c: PCR-Based DNA Profiling Standard

- Components A through D: DNA extracts in liquid form
- Components E and F: DNA spotted on 903 / FTA paper
- Certified values for STR alleles based on CE length polymorphisms

(Current Values for STR Loci										
. I	Cortifie	d Values		Reference	Values		Information Values				
	Autosomal STR	Y STR	X STR	Autosomal STR	Y STR	X STR	Autosomal STR Y STR X STR				
	(24)	(17)	(0)	(23)	(0)	(0)	(1) (0) (0)				
	D1S1656	DYS19	None	D1GATA113	None	None	Penta C None None				
	D2S1338	DYS385a		D1S1627							
	D2S441	DYS385b		D1S1677							
	D3S1358	DYS3891		D2S1776							
	D5S818	DYS389II		D3S3053							
	D7S820	DYS390		D3S4529							
	D8S1179	DYS391		D4S2364							
	D8S1115	DYS392		D4S2408							
	D10S1248	DYS393		D5S2500							
	D12S391	DYS437		D6S1017							
	D13S317	DYS438		D6S474							
	D16S539	DYS439		D9S1122							
	D18S51	DYS448		D9S2157							
	D19S433	DYS456		D10S1435							
	D21S11	DYS458		D17S1301							
	D22S1045	DYS635		D17S974							
	095100	V GATA HA		D18S853							
	EGA	1 GATATIN		D20S1082							
	Penta D			D20S482							
	Ponta E			F13A01							
	SF33			F13B							
	TH01			FESFPS							
	TPOX			LPL	J						
	T TA										

F	Up	odat	ed	Value	s fo	or S	STR L	00	;i	
ci have been fully sequenced	Certific tosomal STR (25) D151656 D251338 D25441 D351358 D55818 D55818 D55818 D55818 D55817 D1051248 D125391 D135317 D165539 D18551 D195433 D18551 D195433 D18551 D195433	ed Values Y STR (29) DYS19 DYS385a DYS385b DYS385b DYS385b DYS389II DYS389II DYS389 DYS383 DYS433 DYS433 DYS439 DYS4439 DYS4438 DYS4456 DYS4458 DYS456 DYS456 DYS458 DYS6459 Y GATA H4 DYS449	X STR (0) None	Reference Autosomal STR (23) D15(627) D15(677) D25(1776) D35(452) D452364 D452364 D452364 D452364 D452364 D452364 D452364 D452364 D452365 D354552 D354552 D354552 D354552 D1054125 D10541455 D10154125 D10541455 D10555 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005 D10555005005005 D105550050050050050000000000	Values Y STR) (0) None *Oth - DIF	K STR (0) None Arg	Informat Autosomal STR (1) Penta C JUS X-12 mation Value	ion Valu Y STR (0) None kit	X STR (12) DXS7132 DXS7132 DXS7423 DXS10074 DXS10079 DXS10103 DXS10134 DXS10134 DXS10148 HPRTB sideration	s:
All certified lo	Penta D Penta E SE33 TH01 TPOX vWA	DY3460 DYS481 DYS518 DYS533 DYS549 DYS570 DYS576 DYS627 DYS643 DYF387S1a DYF387S1a	New	P205482 F13A01 F13B FESFPS LPL Y-STR loci i	n com be c	mercia comp	al kits (Yfiler Vieted by	Plus Oc	s & PPY: t. 2014	23) 4

