Characterization of Candidate Reference Materials by NGS

Workshop: Considerations for Implementing Next Generation Sequencing (NGS) Technologies Into a Forensic Laboratory 68th Annual ArcF S Meeting Las Vegas, NV February 23, 2016

Peter M. Vallone, Ph.D. Applied Genetics Group Biomolecular Measurement Division

Outline

- Standard Reference Materials
- Next Generation Sequencing
- · Current and future characterization plans

Role of Standards

An SRM is prepared and used for three main purposes

- · To help develop accurate methods of analysis
- To calibrate measurement systems used to facilitate exchange of goods, institute quality control, determine performance characteristics, or measure a property at the state-of-the-art limit
- To ensure the long-term adequacy and integrity of measurement quality assurance programs

//www.nist.gov/srm/definitions.cfm

9.5.5 The laboratory shall check its DNA procedures annually or whenever substantia changes are made to a procedure against an appropriate and available NIST standard reference material or standard traceable to a NIST standard.

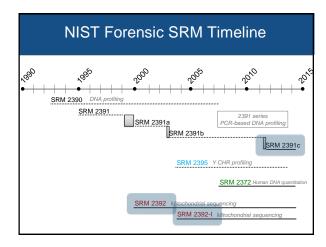
Certified Reference Material

- · Is the same as Standard Reference Material
 - NIST name for CRM; SRM™
- Reference material characterized by a metrologically valid procedure for one or more specified properties, accompanied by a certificate that provides the value of the specified property, its associated uncertainty, and a statement of metrological traceability

Sequence, genotype, quantity/copies of DNA

Certified, Reference & Information Values

Certified Value

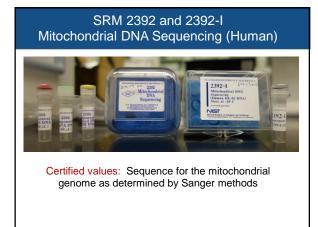

- NIST has highest confidence in accuracy
- All known/suspected sources of bias investigated/taken into account
 Two or more methods e.g. Sanger sequencing AND
 genotyping with multiple primer sets

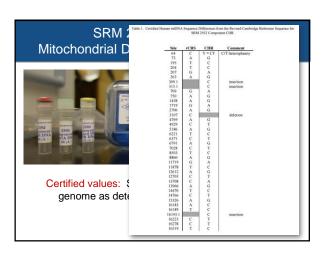
Reference Value

- · Best estimate of true value
- All possible sources of bias NOT fully investigated by NIST
 Genotyping with only two sets of primers

Information Value

- Of interest and use to SRM user
- Insufficient information available to assess uncertainty of value Genotyping with only one set of primers





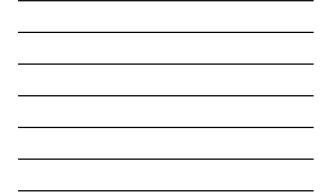
SRM 2391c: PCR-Based DNA Profiling Standard					
SRM 2391c Current price: \$757 USD Primary use: STR genotyping	Certified values 25 aSTRs 29 Y-STRs Reference values 26 aSTRs Informational values 1 aSTR 12 X-STRs 30 InDel Loci				

	Table 2. Ce	rtified Genoty	pes, 25 Autoson	ral STR Loci and An	ekogenin		000	1			
			Ce	mpenent			239				
ACUD.	A	8	C	D	E	F					
0151656	17.3, 17.3	11, 14	11,15	11, 15, 17.3	11, 16.3	17.3, 17.3	D	C111		O (- - - -	
1251338	18,23	17, 17	19,19	18, 19, 23	19,20	17,17	Pro	ווודר	na.	Standar	n
028441	10, 10	10, 14	10,10	10	10, 10	14,14		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ng.	otunuun	a
051358	15, 16	15, 19	16,18	15, 16, 18	14, 15	16,17					
55818	11, 12	12, 13	10,11	10, 11, 12	11, 13	11,13					
651043	11, 18	14, 19	11,14	11, 14, 18		11,16					
75820	11, 11	30, 30	10,12	10, 11, 12	8,10	8,12					
151179	13, 14	10,13	10,17	10, 13, 14, 17	11, 13	10,13		Sai	nao	r data for ST	P motife
81115	15, 16	15, 17	9,9	9, 15, 16	9,16	9,17		Jai	iyei		IX mouis
1051248	15, 16	13, 13	12,16	12, 15, 16	14, 14	14,15	_			SRM 2391c - Camponent A	
25391	18.3, 22	19,24	19,23	18.3, 19, 22, 23	17, 22	18,19	-			Sitist 20914 - Compositor A	
135317	8,8	9,12	11,11	8,11	8,12	8,11	Marker	Length-based Types	Samer Beath	Repeat Neucone - Allele 1	Repeat Structure Allele 2
65539	10, 11	10, 13	10,10	10, 11	11, 12	9,11				[TAGA]+TGA [TAGA]12	
18551	12, 15	13, 16	16,19	12, 15, 16, 19	14, 17	17,22	DIS1656	17,3, 17,3	17.3, 17.3	TAGG ITGIS	[TAGA]+TGA [TAGA]+> TAGG
195433	28, 32,2	16, 16, 2	29.30	13, 13.2, 14, 15.2 28, 29, 30, 32.2	29, 30	29.32.2	D251338	18.23	18.23	[TGCC]+[TTCC]+	[TGCC]> [TTCC] = GTCC
251045	28, 32.2	32, 32.2	29, 30	28, 29, 30, 32.2	29,30	11.15	D25441	10.10	10.10	ITCTAla	ITCTAL TCTG ITCTAL
251045 E1DO	15, 15	15, 17	10,10	15, 16	10, 17	10,11	D151358	10,10	10,10	TCTA [TCTA]ia	
A	21.23	20.23	24.26	21, 23, 24, 26	20.23	21.25	DISTIN	15,16	15,16	ICIA [ICIG]2 [ICIA]12	TCTA [TCTG]1 [TCTA]12 IAGAT112
n D	9,13	8,12	10.11	8, 10, 11, 13	14, 14	8,10	Design	11.18	11,12	[AGAT]11	[AGATI::: ACAT [AGATI::
en E	5,10	7.15	12.13	5, 10, 12, 13	13, 19	11.15	075820	10.0	11,18	[AOAT]11 [GATA]11	[GATA]::
11	16.18	17,18	28.2, 31.2	16, 18, 28, 2, 31, 2	22, 30.2	12.21	D#51179	13.14	13.14	ITCTAID	ITCTAL TCTG ITCTAL
101	8,93	6.93	6.8	6,8,93	6.93	7.93	DESILIS	15.16	15.16	[ATT] ₁₅	IATTI-
ox	8.8	8.11	11.11	8.11	8.11	8.8	101051748	15,16	15, 16	(GGAA) s	[GGAA]=
EA .	18,19	17.18	16.18	16, 18, 19	17, 18	16.18				AGAT GAT [AGAT]+ [AGAC]+	
nekozenin	XX	XY	XY	XY	X.X	XY	D125391	18.3,22	18.1,22	AGAT	[AGAT]13 [AGAC]# AGAT
							D135317	8,8	8,8	[TATC];	[TATC]n
1.0	alud		I	JS cor	- 1-		D165539	10,11	10,11	[GATA]10	[GATA]()
11.	iciua	es n	ewu	JS COI	eio		D18531	12,15	12,15	[AGAA]17	[AGAA]:s
						_	D195433	13,14	13,14	[AAGG] AAAG [AAGG] TAGG [AAGG] ₁₁	[AAGG] AAAG [AAGG] TAGG [AAGG] ₁₂
							021511	28, 32.3	28, 32.3	[TCTA] ₄ [TCTG] ₅ ([TCTA] ₅ TA [TCTA] ₄ TCA [TCTA] ₂ TCCATA} [TCTA] ₂	[TCTA]; [TCTG]; ([TCTA]; TO [TCTA]; TCA [TCTA]; TCCATA]; [TCTA];; TA TCT
							D2251045	15,15	15,15	[ATT] ACT [ATT]	[ATT] ACT [ATT]
							CSEIPO	10,10	10, 10	[AGAT]10	[AGAT]=
							FGA	21,23	21,23	(TTTC);TTTTTTTTTTCT (CTTT);2	(TTTC),TTT TTCT (CTTT):s
							Penta D	9,13	9,13	[AAAGA];	[AAAGA]_
							Posta E	5, 10	5,10	[AAAGA]s	[AAAGA]:o
							5833	16,18	16,18	[AAAG]) AG [AAAG]) AG [AAAG] ₁₆ G [AAAG]) AG	[AAAG]; AG (AAAG]; AG [AAAG]; AG (AAAG]; AG
							T1901	8, 9.3	8, 9.3	[AATG]a	[AATG]+ ATG [AATG]+
							TPOX	8,8	8,8	[AATG]s	[AATG]#
							vWA	18,19	18,19	TCTA [TCTG]4 [TCTA]13	TCTA [TCTG]# [TCTA]14
							Mair Go	and the second	the size or the state of the state	rates bases that are not counted trought the long	the housed present may descent them

NGS and Reference Materials

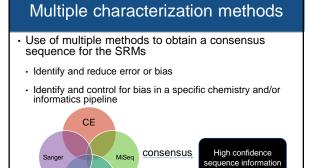
- A reference material can be used to confirm or validate a new technique (NGS)
- Compare to Sanger sequence base calls or allele length/sequence
- Sanger data for STRs in SRM 2391c
- The new technique can also be used to further characterize the reference material
 - · Once the sources of bias are understood

Outline


- Standard Reference Materials
- Next Generation Sequencing
- Current and future characterization plans

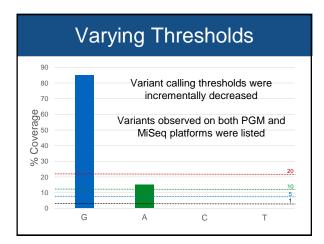
NGS (or MPS)

- Relatively new technology
- · Higher degree of
- Coverage; markers, clonal amplification
- Easier than Sanger ?
- Bioinformatics is an important aspect
- Commercial kits are now available for STR/SNP typing
- Is Sanger sequencing still the gold standard?

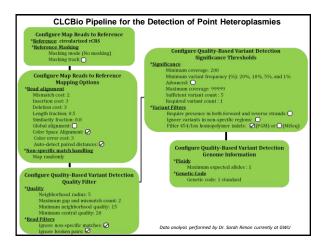

Current NGS Platforms in use at NIST

Outline

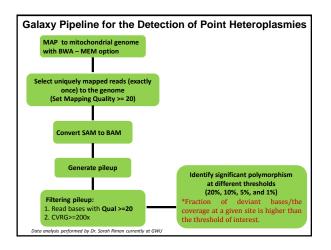
Standard Reference Materials

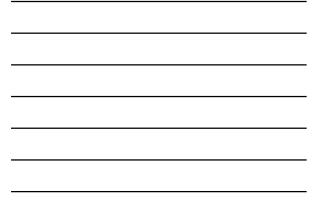

PGM

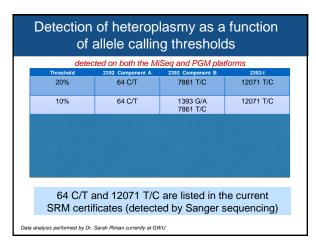
- Next Generation Sequencing
- Current and future characterization plans


SRM 2392 & 2392-I Mitochondrial DNA Sequence

- Obvious candidate for NGS characterization
- Compare and confirm sequence calls made with Sanger methods
- High coverage may provide further characterization of heteroplasmy


SRM 2392 & 2392-I Mitochondrial DNA Sequence					
 PGM & MiSeq analysis Variants from rCRS were confirmed Concordance across platforms Lower level heteroplasmies were observed Ambiguous by Sanger sequencing 					
 20, 10, 5, 1% SNP calling thresholds examined 	M.M.M.M.M.				
	Site 1393 (G/A)				



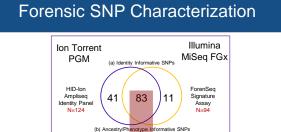


	Detection of heteroplasmy as a function of allele calling thresholds					
	detected on both the MiSeq and PGM platforms					
	Threshold	2392 Component A	2392 Component B	2392-1		
	20%	64 C/T	7861 T/C	12071 T/C		
	64 C/T and 12071 T/C are listed in the current SRM certificates (detected by Sanger sequencing)					
Data a	nalysis performed by Dr.	Sarah Riman currently at GM	wu			

	Detection of heteroplasmy as a function of allele calling thresholds						
_			Seq and PGM plat				
	Threshold	2392 Component A	2392 Component B	2392-1			
	20%	64 C/T	7861 T/C	12071 T/C			
	10%	64 C/T	1393 G/A 7861 T/C	12071 T/C			
	5%	64 C/T	1393 G/A 7861 T/C	2445 T/C 5149 C/T 12071 T/C			
	64 C/T and 12071 T/C are listed in the current SRM certificates (detected by Sanger sequencing)						
Data a	nalysis performed by Dr.	Sarah Riman currently at GV	vu				

	Detection of heteroplasmy as a function of allele calling thresholds					
	detec	ted on both the Mi	Seq and PGM plat	forms		
	Threshold	2392 Component A	2392 Component B	2392-I		
	20%	64 C/T	7861 T/C	12071 T/C		
	10%	64 C/T	1393 G/A 7861 T/C	12071 T/C		
	5%	64 C/T	1393 G/A 7861 T/C	2445 T/C 5149 C/T 12071 T/C		
	1%	64 C/T	1393 G/A 3242 G/A 7412 C/T 7861 T/C	2445 T/C 5149 C/T 12071 T/C		
	64 C/T and 12071 T/C are listed in the current SRM certificates (detected by Sanger sequencing)					
Data	analysis performed by Dr.	Sarah Riman currently at GV	vu			

	Detection of heteroplasmy as a function of sequencing platform and analysis pipeline							
Platform & Analysis								
	64 T	1393 A	3242 A	7412 T	7861 C	2445 C	5149 T	12071 C
PGM (CLC)	31%	15%	3%	3%	70%	7%	9%	50%
MiSeq (CLC)	32%	18%	4%	4%	88%	9%	6%	50%
PGM (Galaxy)	32%	15%	3%	ND	79%	8%	9%	50%
MiSeq (Galaxy)	31%	18%	5%	1.4%	89%	9%	7%	51%
Milleq (Galaxy) 31% 18% 5% 1.4% 89% 9% 7% 51% The intent would be to include the lower level heteroplasmies as informational values in the updated certificate of analysis Site 7861								
Data analysis perfor	ned by Dr. Sarah R	iman currer	tly at GWU			-		_


Forensic SNPs

- · With NGS we now have a platform for SNP typing
- Identity
- Biogeographical ancestry

HID-lon

Ampliseq Ancestry Panel N=165 110

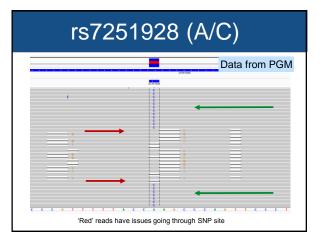
- Phenotype
- Ion torrent AmpliSeq HID and Ancestry panels (PGM)
- Illumina ForenSeq Kit SNPs (MiSeq/FGx)
- Thoughts about characterizing SNPs...we are certifying the measurement of a property (SNP allele) not the application of the data

55

ForenSeq Signature Assay N=22+56

1

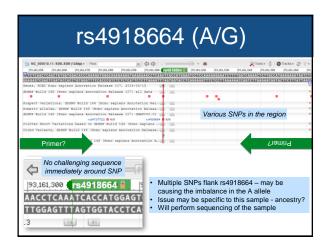
22



Forensic SNP Characterization Testing nine candidate samples in replicate · Two of the 138 overlapping SNPs indicate discordance In the absence of overlapping markers rs7251928 (ancestry) we assess: Strand bias • PGM = AC Coverage balance for heterozygous and homozygous genotypes Reproducibility (replicates) MiSeq/FGx = CC • rs4918664 (ancestry) FS • PGM = GG MiSeq/FGx = AG or Characi Material tings, Peter M. V http://www.cstl.nist.gov/biotech/strbase/pub_pres/KieslerISFG2015poster.pd

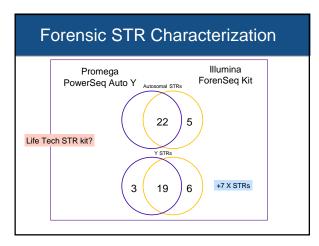
MiSeq/FGx (CC) 1000-2000x coverage >99.9% C (no A calls) PGM (AC) 400-600x coverage Strand bias (~14%) – favors the 'negative strand' Imbalanced allele coverage (14% A: 86% C)

rs7251928 (A/C)					
doBNF Build 144 (Romo sepiene Suspect variations, doSNF Buil Somatic alleles, doSNF Build deSNF Build 146 (Romo sepiene	20011121211 BBBT 3	Rel. () () eas. () () () () ()	No flanking SNP	acas - ्ये ? 4,077.50 विकारवर्गताव विकारवर्गताव S	
	✓ < <		ana + ⊂[]	1	
077,080	4,077,090	rs7251928	4,077,110		
стесс	CCGTTTTTACC	AAGCCCAGT	TCCCTCTCTGCA	AC	
GACGG	GGCAAAAATGO	STTCGGGTCA	AGGGAGAGACGT	TG	
2015	00 4 h	ub Lean		_	
F	Homopolymer r	egions arour	nd SNP site		



MiSeq/FGx (AG) Coverage 2000x Balance = 0.68 (A coverage less than G) PGM (GG) Strand bias (49-53%)

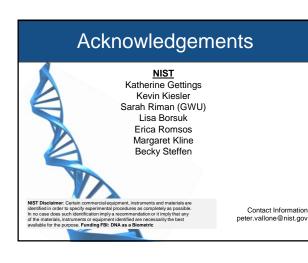
- + $\,\approx$ 5% A allele (a bit above background; QC filter flagged)
- Lower coverage relative to other samples (300x versus 700-800x)
- · Other heterozygous samples are concordant
- Issue may be specific to this one sample?


Α	G	

SRM 2391c

PCR-Based DNA Profiling Standard

- Data was recently updated (April 2015) Sanger sequencing was performed for the certified STR loci
- Sequencing motifs in certificate
- <u>https://www-s.nist.gov/srmors/view_cert.cfm?srm=2391C</u>
- Future plans for NGS characterization of STR loci
- Promega PowerSeq Auto/Y (STRait Razor)
- Illumina ForenSeq (STRait Razor & Illumina UAS)
- · Other? (PGM)


Sampling of SRM 2391c sequence data

Comp	Locus	Length-based	Sanger	Allele 1	Allele 2
A	D2S1338	18, 23	18, 23	[TGCC] ₆ [TTCC] ₁₂	[TGCC] ₇ [TTCC] ₁₃ GTCC [TTCC] ₂
A	D2S441	10,10	10,10	[TCTA] ₁₀	[TCTA] ₈ TCTG [TCTA]
A	D8S1179	13,14	13,14	[TCTA]13	[TCTA]2 TCTG [TCTA]11
В	D2S441	10,14	10,14	[TCTA] ₁₀	[TCTA]11 TTTA [TCTA]2
B	D12S391	19.24	19.24	IAGATI IAGACI AGAT	

Examples of varying sequence motifs detected by sequencing

Future Strategy - Thoughts

- SRM 2391c typed the Promega and Illumina kits
- No discordances observed from the certified CE/Sanger genotypes (in STR motifs only)
- SRM 2391d will be developed in the next two years
- Characterize with multiple: platforms/assays/pipelines
- Concordance to length based CE genotypes
- Include flanking region sequence (how much?)
- When will it be possible to replace Sanger sequencing of STRs for SRM work?

