

Disclaimer

- Forensic DNA research conducted at NIST is supported by an interagency agreement between the National Institute of Justice and the NIST Law Enforcement Standards Office.
- Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. <u>Certain commercial</u> <u>equipment, instruments, and materials are identified in order</u> to specify experimental procedures as completely as possible.
- In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.

Current Characterization of Forensic SRMs

- 2391c PCR Based DNA profiling standard
 - 68 STR markers (51 autosomal + 17 Y chromosome)
 - STR repeat lengths (alleles) were certified using multiple (unique) PCR primer sets
 - Sanger sequencing was only performed for loci without multiple PCR primer sets (only 10%)
- 2392 & 2392-I Mitochondrial DNA sequencing standard – Entire mtGenome (≈16,569 bp) was certified by Sanger sequencing
- 2372 Human DNA Quantitation Standard

•

- UV absorbance (decadic attenuance) measurement

http://www.cstl.nist.gov/biotech/strbase/pub_pres/Vallone_AAFS_2014.pdf

Multiple NGS Platforms

- Use of multiple platforms to obtain a consensus sequence for the SRMs
 - Identify and reduce false positives and negatives
 - Identify and control for bias in a specific chemistry and/or informatics pipeline

- Detection of heteroplasmy (< 20%)
- Issues with homopolymers
 Chemistry and informatics related

Detection of Repeat Motifs*				
Marker	Component	Allele	Allele Repeat Structure	
D8S1179	С	17	[TCTA] ₂ TCTG [TCTA] ₁₄	
D12S391	А	22	[AGAT]13 [AGAC]8 AGAT	
D12S391	С	19	[AGAT] ₁₃ [AGAC] ₅ AGAT	
D12S391	С	23	[AGAT]12 [AGAC]10 AGAT	
D21S11	в	32	[TCTA] ₄ [TCTG] ₆ {[TCTA] ₃ TA [TCTA] ₃ TCA [TCTA] ₂ TCCATA} [TCTA] ₁₄	
SE33	с	31.2	[AAAG] ₂ AG [AAAG] ₃ AG [AAAG] ₉ AAAAAA [AAAG] ₂₁ G AAGG[AAAG] ₂ AG	
DYS389II	В	31	[TCTG] ₆ [TCTA] ₁₂ [TCTG] ₃ [TCTA] ₁₀	
DYS458	В	17.2	[GAAA] ₁₅ AA [GAAA] ₂	
DYS635	В	20	[TCTA] ₄ [TGTA] ₂ [TCTA] ₂ [TGTA] ₂ [TCTA] ₁₀	
DYS635	С	21	[TCTA] ₄ [TGTA] ₂ [TCTA] ₂ [TGTA] ₂ [TCTA] ₁₁	
*Sequ	ence variation	s that were r	ot listed in Butler J.M (2012) or STRBase	

Future Directions

- SRM 2391c
 - Perform STR typing on MiSeq platform
 - Sequence male components for 5 new single copy Y-
 - STR markers and 7 rapidly mutating Y-STR markers - Type Qiagen InDel and X-STR kits (information values)
 - Goal: update SRM 2391c by Fall 2014
- · Currently working on a candidate material for SRM 2372a to be certified with digital PCR

Thank you for your attention!

Questions? Peter.Vallone@nist.gov (1-301-975-4872)

Acknowledgements Dr. Katherine B. Gettings (NIST) Robert Lagace (Life Tech) Nnamdi Ihuegbu (Life Tech)

Outside funding agencies:

FBI - Evaluation of Forensic DNA Typing as a Biometric Tool NIJ - Interagency Agreement with the Office of Law Enforcement Standards

NIST/NRC Postdoc Program

- Selected Topics Rapid DNA Typing DNA Mixture Analysis rensic Applications of Next-Gen Sequencing DNA Extraction efficiency Forensic SNPs Y-STRS PL to supersed topic/comjects
- Current stipend (2014) is \$66,256 per year - Currently a limit of 120 slots per year
 - Congressionally-mandated program for NIST
 - Maximum 2-year appointments
- Awardees must be U.S. citizens
- Awardees are chosen through a national competition administered by the National Research Council of the National Academy of Sciences.
- ٠ Two competitions per year – deadlines of February 1 and August 1
- Contact either Dr. Peter Vallone (peter.vallone@nist.gov) or or Dr. Michael Coble (michael.coble@nist.gov)

http://www.nist.gov/iaao/postdoc.cfm http://nrc58.nas.edu/RAPLab10/Opportunity/Program.aspx?LabCode=50

Foren

Open to sug