

General qPCR Comments from the Forensic Community

- "I feel that the calibrant may exhibit a two-fold difference from the 'true' value"
- "In practice we have found that utilizing a target range of 1-2 ng based on a method X result often times yields STR data below our rfu threshold"
- "There appears to be an obvious difference between the two lots of a calibrant"
- "We have not had any problems with the lot_X calibrant and our results have been relatively stable"

Developing a Calibrant DNA

- Some sources of genomic DNA
 - Single source
 - Multiple source
 - Cell line
- How is the concentration of the Calibrant determined?
 UV, fluorescence, phosphorus, others
- Since qPCR is relative to the DNA calibrant used, different calibrants may give different results
 - Are these within error?
 - Can this be controlled?
 - Is the error acceptable for our purpose?

Things to Consider with Calibrants

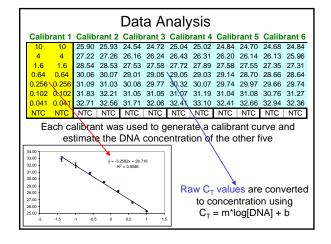
- Will the calibrant have inherent characteristics that may bias results?
- If probing a multi copy locus (Alu) will different calibrants have significantly different numbers of copies (cell line vs single source)?
- If using UV spectroscopy for quantitation: do the OD measurements correlate with qPCR results? (1 OD = 50 ng/µL double stranded DNA)

Methods

- qPCR methods will vary
 - Master mix
 - Annealing temp
 - Type of probe
 - Genetic marker (multi copy)
 - Instrument
 - PCR efficiency
 - Amplicon size
- How will different Methods perform with various Calibrants?

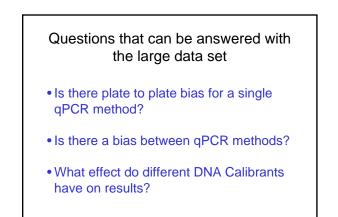
qPCR Method Evaluation Protocol

- 6 different calibrants:
 - 3 commercial (2 cell lines, one multiple source)
 - 3 purified at NIST (single source; one female, two males)
- Where possible, [DNA] was assigned from UV absorption at 260 nm; otherwise used manufacturer's values.
- Stocks of the candidates were diluted to: – 10.0, 4.0, 1.6, 0.64, 0.26, 0.1, and 0.04 ng/µL daily.
- Each candidate sample was run in duplicate on duplicate plates with each of the 5 qPCR methods.

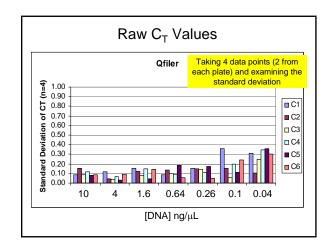

Samples run on ABI 7500

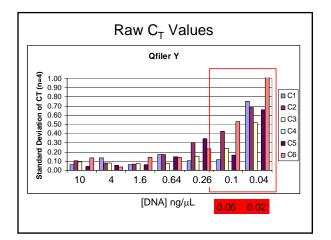
qPCR Methods Evaluated at NIST

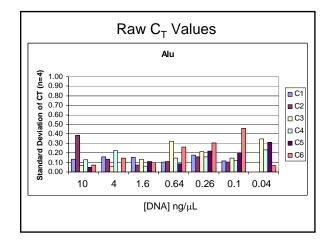
- Quantifiler Human (TaqMan MGB)
- Quantifiler Y Male (TaqMan MGB)
- Alu (SYBR Green)
- CA DOJ nDNA (TaqMan BHQ)
- CFS HumTH01 (TaqMan MGB)
- 1. Quantifiler[™] Human DNA Quantification Kit PN4343895
- 2. Quantifiler™ Y Human Male Quantification Kit PN4343906
- 3. Nicklas J, Buel E. J Forensic Sci 2003; 48:936-944.
- Timken M, Swango K, Orrego C, Buoncristiani M. J Forensic Sci 2005; 50:1044-60
 Richard ML, Frappier RH, Newman JC. J Forensic Sci 2003;48:1041-1046.

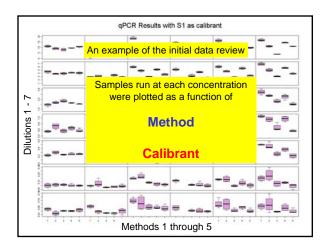

Method	Amplicon (bp)	Target
Quantifiler Human	62	Human telomerase reverse transcriptase gene (hTERT), 5p15.33
Quantifiler Y Male	64	Sex determining region Y gene (SRY)
Alu	124	Alu , Ya5 Subfamily (multi copy)
CA DOJ	170-190	TH01, 11p15.5
CFS HumTH01	62	Flanking region of TH01, 11p15.5

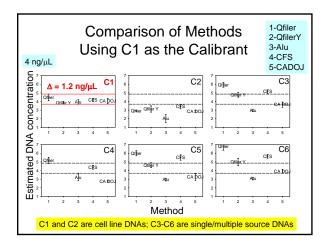
6 DNA Calibrants were evaluated 5 qPCR methods were evaluated Calibrant 1 Calibrant 2 Calibrant 3 Calibrant 4 Calibrant 5 Calibrant 6											
10	10	10	10	10	10	10	10	10	10	10	10
4	4	4	4	4	4	4	4	4	4	4	4
1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256	0.256
0.102	0.102	0.102	0.102	0.102	0.102	0.102	0.102	0.102	0.102	0.102	0.102
0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041
NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC
Ser	The above plate format was run twice for each of the 5 qPCR methods (10 plates total) 960 data points (C_T values) Serial dilution of 10 ng to 41 pg were prepared fresh for each Cailbrant DNA material – based on UV or supplier information									ach	

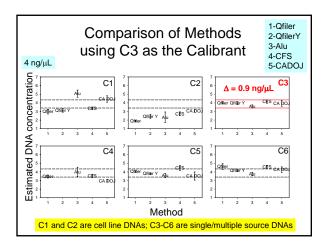

Data Analysis											
Calib	rant 1	Calib	rant 2	Calib	rant 3	Calib	rant 4	Calib	rant 5	Calib	rant 6
10	10	23.8	21.2	8.5	7.7	9.6	8.6	8.1	7.3	7.2	6.5
4	4	7.2	8.1	2.8	3.1	3.3	3.6	2.8	3.1	2.5	2.8
1.6	1.6	2.3	1.7	0.9	0.7	1.2	0.9	1.0	0.8	0.9	0.7
0.64	0.64	0.68	0.73	0.31	0.33	0.39	0.42	0.34	0.36	0.31	0.34
0.256	0.256	0.215	0.253	0.104	0.121	0.137	0.159	0.120	0.139	0.113	0.131
0.102	0.102	0.074	0.128	0.038	0.064	0.052	0.086	0.046	0.075	0.044	0.072
0.041	0.041	0.060	0.055	0.031	0.029	0.043	0.040	0.038	0.035	0.037	0.034
NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC
· · · · ·											

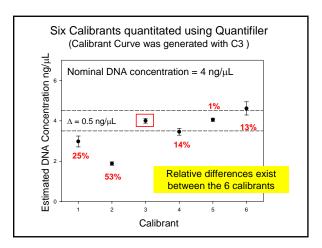

96 concentrations estimated per calibrant on plate Minus 12 NTC = 564 6 calibrants *96 = 504 values per plate 504*10 = 5040 values

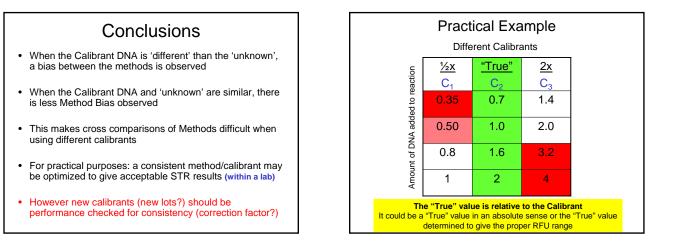





- Taking 4 data points (2 from each plate) and examining the standard deviation:
- All assays except Alu have higher error at the 2 lowest concentrations this is to be expected
- Alu (multi copy locus) performs well at low [DNA]
- Qfiler Y exhibits higher deviation at low [DNA] possibly due to the haploid nature of the Y CHR
- Uncertainty is ~0.1 to 0.2 C_T units







SRM 2372 Human DNA Quantitation Standard Anticipated 2006 issue Component A: Male (blood) Component B: Female (blood) Component C: Mixture (placenta) •Genomic DNA isolated by Salt out procedure •Treated with RNAse and re-precipitated •UV spectroscopy 340-220 nm on a NIST calibrated spectrophotometer •Assume A²⁶⁰ = OD²⁶⁰ = 1 for a 50 µg/mL solution

•Planned Amounts: Each component 50 μ L of Human Genomic DNA with a concentration targeted @ 50 ng/ μ L.

Stai	oility o	of the	DNA	Stand	ard	ube	Study
				were ev			
				ge tempe nt [DNA]		5	
	Du			iplicate c		ins	
Dui	ation 12		,				ints
				-			
	[DNA]	Α	В	$\left(\mathbf{x} \right)$	D	E	
	ng/µL						
	0.2	1.0	1.05	0.81	1.06	0.87	
	1.0	1.0	1.14	1.31	1.01	0.23	
	5.0	1.0	1.31	1.33	1.21	0.86	
F	snap ca	p:Cam	bient tube	s evapora	ited; E I	ids cracke	d

