

What are the Advantages of Multiplexing?

Obtain more information per unit time Reduce the amount of limited forensic sample used Save on reagents; enzyme, buffers, DNA oligomers Reduces labor Streamlines data analysis For certain markers it is essential (SNPs, YSTRs) Coincides with high capacity instrumentation

What are the Challenges of Multiplexing?

Only guidelines exist for designing multiplexes

More markers = increased complexity

Testing a robust multiplex

Inclusion of useful markers in the multiplex

Managing the volume of information obtained

Goals for Multiplex Assay Development

Working with collaborators who have markers of forensic interest

By using our multiplex assays collaborators can type markers and evaluate forensic utility

Further understanding of multiplex assays

Publish assay details for others to evaluate (commercial and research)

		•	-	011			
Selec	ct single	eplez	x PCR	prime	ers fo	r ead	ch amplicon
01.760	start	len	19 1 1111 Tm		anw	arc	seu
LEFT PRIMER RIGHT PRIMER	27 174	20 22	60.06 60.31	50.00	4.00	2.00	GGGATAACAGCGCAATCCTA CGGTCTGAACTCAGATCACG7
SEQUENCE SIZE:	205						
PRODUCT SIZE: 1	N SIZE: 2 148, PAIR	05 ANY (COMPL: 3.	00, PAI	кз' с	OMPL:	2.00
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAA	N SIZE: 2 148, PAIR NS (start ACGGAACAA	O5 ANY (, len) GTTAC(COMPL: 3.)*: 70,63 CCTAGGGAT	00, PAI 5 FAACAGCG	R 3' C CAATCC	OMPL:	2.00 TAGAGTCCATA
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAA 61 TCAACAATA	N SIZE: 2 148, PAIR NS (start ACGGAACAA AGGGTTTAC	05 ANY (, len) GTTAC(GACCT(COMPL: 3.)*: 70,6: CCTAGGGAT >>>> CGATGTTGC	00, PAI	R 3' C	COMPL:	2.00 TAGAGTCCATA TGCAGCCGCTA
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAA 61 TCAACAATA	N SIZE: 2 148, PAIR NS (start ACGGAACAA AGGGTTTAC XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	05 , ANY (, len) GTTAC(GACCT(XXXXXX	COMPL: 3.)*: 70,63 CCTAGGGAT >>>>> CGATGTTGO	00, PAI 5 TAACAGCG SATCAGGA	R 3' C	TATTC	2.00 TAGAGTCCATA TGCAGCCGCTA XXXXXXXXXXXX
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAA 61 TCAACAATA 121 TTAAAGGTI XXXXXXXXXX	N SIZE: 2 148, PAIR NS (start ACGGAACAA AGGGTTTAC XXXXXXXX CCGTTTGTT XXXXXX	05 ANY (, len) GTTAC(GACCT(XXXXX CAACG/	COMPL: 3.)*: 70,65 CCTAGGGAT >>>>> CGATGTTG(>>>>>> >>>>> >>>>> ATTAAAGT(00, PAI 5 FAACAGCG SATCAGGA SATCAGGA CCTACGTG	R 3' C CAATCC CATCC COCOCOC CATCTGA	OMPL: TATTC BTGG COCCCC	2.00 TAGAGTCCATA TGCAGCCGCTA XXXXXXXXXXXXX GACCGGAGTAA

Rimer3_Parameters	×
Desired Tm Bange for PCB Primers	Primer3 Defaults - see Pete Valione if you want to change these
Minimum Maximum Optimum Max Tm Difference	Max 3' Stability 9.0
	Max 3' Mispriming 12.0
	Pair Max Mispriming 12.0
Desired Size Range for PCR Primers	
Minimum Maximum Optimum	Primer GC % 20.0 80.0
	Max Self Comp 8.0
Primers to Return	Max 3' Comp 3.0
	Max#N's 0
Set Parameters	Max Poly-X 3.0
Can help utilize all the tools that Prim	er3 provides ct(nM) 50.0
	Salt Conc (mM) - KCI 50.0

User Interface of SNP Primer Design Pro	ogram
Elle Run	×
Desired Tm Range for SNP Primers	
Minimum Maximum	
Desired Cise Dense for CND Drimers	
Minimum Maximum	
18 • 28 •	
SN 3 1.0 0.085 Set Parameters	

				Prog	ram Ou	tput			
	L	abel	L	.ength	Se	quence)	Position	Tm
Forwa	rd Primers	s Salt = 0.3C	t = 10						
M42 3	40 bp (A/1	7 297 W) ACC	10889	18	ATTTAGGA	CACAA	AAGCW	280	60.65398
M42 3	40 bp (A/1	[297 W) ACC	10889	19	GATTTAGG	ACACAA	AAGCW	279	61.96716
M42 3	40 bp (A/1	7 297 W) ACC	10889	20	AGATTTAGO	GACACA	AAAGCW	278	63.67808
	Revers	e Primers							
M42 3	40 bp (A/1	297 W) ACC	10889	23	GCTCTCTTT	TCATTA	TGTAGTW	319	63.5462
M42 3	40 bp (A/1	[297 W) ACC	10889	21	TCTCTTTT	CATTAT	GTAGTW	317	59.28964
M42 3	40 bp (A/1	7 297 W) ACC	10889	20	СТСТТТТТС	CATTATG	TAGTW	316	57.50257
Hairpin	Dimer	Template	Mass	Rank	Mutation	+ddC	+ddT	+dd/	A +dd(
4	8	10	5273.48	2.133333	W	N/A	5561.6799	8 5570.689	998 N/A
5	10	10	5602.69	2	W	N/A	5890.88994	41 5899.899	941 N/A
5	10	11	5915.9	2	W	N/A	6204.09990	02 6213.109	902 N/A
4	8	22	6734.42	2.133333	W	N/A	7022.61992	22 7031.629	922 N/A
4	8	20	6116.02	2.133333	W	N/A	6404.2200	2 6413.230	002 N/A
4	8	19	5811.82	2.133333	W	N/A	6100.01982	24 6109.029	824 N/A

				-
Actual length (bases)	alelle 1	allele 2	Δ allele1	Δ allele 2
18	25.0	27.1	-7.0	-9.1
26	28.6	30.7	-2.6	-4.7
30	34.7	35.6	-4.7	-5.6
34	36.9	38.2	-2.9	-4.2
38	42.2	43.7	-4.2	-5.7
42	45.0	46.4	-3.0	-4.4
46	51.4	52.2	-5.4	-6.2
50	53.3	54.2	-3.3	-4.2
54	57.5	58.3	-3.5	-4.3
58	59.2	59.7	-1.2	-1.7

16 Test Samples with mtSNP	10-plex on ABI 3100
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	A ALLANA
	<u>a ralla a l</u>
	A ALLA A
	A A A A A A A A A A A A A A A A A A A
	A A A A A A A A A A A A A A A A A A A
	A A A A A A A

SRM 2395 Candidate Sample Testing

Y SNP Results with Primer Extension and MALDI-TOF MS

	M9(C/G)	M42(A/T)	M45(G/A)	M89(C/T)	M96(G/C)
Α	G	Т	Α	Т	С
в	С	Т	G	Т	С
С	С	т	G	т	С
D	С	Т	G	С	G
Е	С	Т	G	Т	С
F					

A standard primer extension assay (mini-sequencing) is performed using an extension primer that contains a UV photocleavable linker

After the extension reaction is completed, the linker is cleaved (λ = 366 nm) resulting in a ~5 base oligonucleotide for MALDI TOF MS analysis

An analyte of reduced mass results in higher sensitivity, resolution, and more uniform ionization for multiplexing

Example M42

5' CCAGCTCTCTTTTCATTATLTAGT 3' mass = 7492.9

5' TAGT 3' mass = 1268.8

	UV Cleavable SNP Primers	
Locus	Extension Primer	Mass
M9	ΑϹΑΤGTCTAAATTAAAGAAAAATAAA ^{OMe} GA ^{OMe} G	1362.9
M42	CCAGCTCTCTTTTCATTAT <u>G</u> TAGT	1268.8
M45	GCAGTGAAAAATTAT <u>A</u> G ^{OMe} ATA	1307.8
M89	CTCTTCCTAAGGTTATGTACAAA <u>A</u> ATCT	1228.8
M96	AACTTGGAAAACAGGTCTCTCA <mark>T</mark> AATA	1261.8
Und A ^{OM6} meth	erlined base = position of UV photocleavable ^e and G ^{OMe} are 2'-O-methyladenosine and 2'- nylguanosine, respectively	moiety O-

SNP	Haplo	otypes	for 16	S Test	Sampl	es
Sample ID	M9 (C/G)	M42 (A/T)	M45 (G/A)	M89 (C/T)	M96 (G/C)	
Male 1	G	Т	Α	Т	C	
Male 2	G	Т	Α	Т	C	
Male 3	G	Т	Α	Т	С	
Male 4	G	Т	Α	Т	С	
Male 5	G	Т	Α	Т	С	
Male 6	G	Т	Α	Т	C	
Male 7	G	Т	Α	Т	С	
Male 8	С	T	G	C.	G	
Male 9	С	Tvr	oina Resi	ults Obta	ained fron	n
Male 10	С	SNaPs	hot and	MS tech	niques A	are
Male 11	С					y. c
Male 12	С	Т	G	С	G	
Male 13	С	Т	G	С	G	
Male 14	G	T	G	Т	C	
Male 15	С	Т	G	Т	C	
Female	-	-	-	-	-	

