

•Reverse phase-ion pairing HPLC (Transgenomic, San Jose, CA) was employed for the separation, concentration, and desalting of mixtures of nucleic acid oligomers.

Dr. Peter M. Vallone

A MS profile of a multiplex PCR kit allows the unique mass of each primer to be measured
This is a rapid and inexpensive method of quality controlling the kit by confirming that primers for a specific loci are present
Sequencing of short DNA oligomers allows the user/community to confirm that primers remain consistent over time
—Incorporation of a different fluorescent dye
—Addition of mobility modifying linkers
—Altering primer binding site

Mitochondrial SNPs	Y Chromosome SNPs
•Human identification	•Human identification
 Control Region/D-loop highly polymorphic 	 Defines genetic affinities between contemporary global populations
•10plex already demonstrated	giosal populations
Collaboration with the EPI to	•Over 200 SNPs have been
find candidate mtSNP	uiscovereu
markers	 Initial research already performed for multiplexing 5
•Assay design challenges:	Y SNP markers M9, M42,
nigh GC content, insertions/deletions, closely spaced SNP sites	M45, M89, M96

Challenges for Analysis of DNA by MALDI-TOF MS

- Non-uniform matrix crystallization leads to nonhomogeneous sample spots; MS signal can thus vary across the sample ("sweet spots" exist). This can make automated data collection difficult.
- Sample salts affect resolution and sensitivity; a "clean up" step is required prior to MALDI analysis.
- Limited mass range with high accuracy and resolution (best below 10 kDa but works up to ~35 kDa). The limited mass range restricts multiplex designs.
- Salt adducts Na⁺(+22) can interfere with accurate genotyping of heterozygous samples.

Advantages/Disadvantages of Using a Cleavable Primer

•Multiplexing (10plex has been shown)

•Control of fragment mass with cleavable base

- •Reduced mass primer fragments are easier to ionize
- •Better resolution (due to lower mass range)
- Only bead chromatography required

•Uses a modified primer

- •Time required for bead washing steps
- •Multiple steps for automation

