

Peter M. Vallone NIST Biotechnology Division February 11, 2002

Forensic Mitochondrial DNA Analysis: A Community Forum 2002 AAFS Annual Meeting Atlanta, GA

	Mul	tip	lex F	PCR	l De	esię	gn
Sele	ct singl ampli	eple icon	x PCF s usin	R prim g Prim	ers fo ner 3	or ea soft	ach of the 9 ware
OLIGO	start_	len	tm	qc%	any	31	seq
LEFT PRIMER	27	20	60.06	50.00	4.00	2.00	GGGATAACAGCGCAATCCTA
RIGHT PRIMER	174	22	60.31	50.00	8.00	3.00	CGGTCTGAACTCAGATCACGTA
PRODUCT SIZE: 1	148, PAIR IS (start.	ANY (COMPL: 3.	.00, PAI	TR 3' C	COMPL:	2.00
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAN	148, PAIR NS (start, ACGGAACAAG	ANY (, len) ;TTAC(COMPL: 3.)*: 70,65 CCTAGGGAT	.00, PAI 5 FAACAGCG	R 3' C	COMPL:	2.00 TAGAGTCCATA
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAN 61 TCAACAATA	148, PAIR NS (start, ACGGAACAAG AGGGTTTACG	ANY (, len) FTTACC GACCTC	COMPL: 3.)*: 70,65 CCTAGGGAT >>>>> CGATGTTGO	.00, PAI 5 TAACAGCG	R 3' C CAATCC	COMPL: CTATTC → RTGG	2.00 TAGAGTCCATA TGCAGCCGCTA XXXXXXXXXXXX
PRODUCT SIZE: 1 EXCLUDED REGION 1 CTTGACCAJ 61 TCAACAATJ 121 TTAAAGGTT XXXXXXXXX	148, PAIR NS (start, ACGGAACAAG AGGGTTTACG XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ANY (, len) FTTACC GACCTC COCCC CACCGA	COMPL: 3.)*: 70,6! CCTAGGGAT >>>>> CGATGTTGO COCOCOCOCO ATTAAAGTO	.00, PAI 5 TAACAGCG GATCAGGA XXXXXXXXX CCTACGTG	ER 3' C GCAATCC LCATCC COCOCOC GATCTGA	COMPL: TATTC TATTC RATGG	2.00 TAGAGTCCATA TGCAGCCGCTA XXXXXXXXXXX GACCGGAGTAA

		abol		onath	So	auono	•	Position	т	m
Farmer	L. Duine and		1 0	_engui	36	quence	,	FUSILION	•	m
Forwar		5 Salt = 0.3 Cl	= 10	40	A TTT A O O A			000	00.0	5000
M42 34	0 bp (A/ I	297 W) ACO	10889	18	ATTAGGA		AAGCW	280	60.6	5398
M42 34	0 bp (A/ I	297 W) AC0	10889	19	GATTIAGG	ACACAA	AAGCW	279	61.9	96716
M42 34	0 bp (A/1	297 W) AC0	10889	20	AGATITAGO	BACACA	AAAGCW	278	63.6	67808
	Revers	e Primers								
M42 34	0 bp (A/1	297 W) AC0	10889	23	GCTCTCTTTT	TCATTA	IGTAGTW	319	63.	5462
M42 34	0 bp (A/1	297 W) AC0	10889	21	TCTCTTTT	CATTAT	GTAGTW	317	59.2	28964
M42 34	0 bp (A/T	297 W) AC0	10889	20	CTCTTTTC	CATTATG	TAGTW	316	57 5	50257
		- /			010111110			010	0110	
Hairpin	Dimer	Template	Mass	Rank	Mutation	+ddC	+ddT	+dd/	4	+ddG
Hairpin	Dimer	Template	Mass	Rank	Mutation	+ddC	+ddT	+dd/	4	+ddQ
Hairpin 4	Dimer 8	Template	Mass 5273.48	Rank	Mutation 3 W	+ddC N/A	+ddT 5561.67998	+ dd	A 998	+ddG N/A
Hairpin 4 5	Dimer 8 10	Template 10 10	Mass 5273.48 5602.69	Rank 2.133333 2	Mutation B W W	+ddC N/A N/A	+ddT 5561.67998 5890.88994	+ dd 5570.689 5899.899	A 998 941	+ddG N/A N/A
Hairpin 4 5 5	Dimer 8 10 10	Template 10 10 11	Mass 5273.48 5602.69 5915.9	Rank 2.133333 2 2 2	Mutation 3 W W W	+ddC N/A N/A N/A	+ddT 5561.67998 5890.88994 6204.09990	+dd/ 3 5570.689 1 5899.899 2 6213.109	A 998 1941 1902	+ddG N/A N/A N/A
Hairpin 4 5 5	Dimer 8 10 10	Template 10 10 11	Mass 5273.48 5602.69 5915.9	Rank 2.133333 2 2 2	Mutation W W W	+ddC N/A N/A N/A	+ddT 5561.67998 5890.88994 6204.09990	+dd/ 5570.689 5599.899 2 6213.109	A 998 1941 1902	+ddC N/A N/A N/A
Hairpin 4 5 5 4	Dimer 8 10 10 8	Template 10 10 11 22	Mass 5273.48 5602.69 5915.9 6734.42	Rank 2.133333 2 2 2 2 2.133333	Mutation W W W W W W	+ddC N/A N/A N/A N/A	+ddT 5561.67998 5890.88994 6204.09990 7022.61992	+dd/ 5570.683 5599.899 2 6213.109 2 7031.629	4 998 941 902	+ddC N/A N/A N/A
Hairpin 4 5 5 4 4	Dimer 8 10 10	Template 10 10 11 22 20	Mass 5273.48 5602.69 5915.9 6734.42 6116.02	Rank 2.133333 2 2 2 2 2 2.133333 2 2.133333	Mutation W W W B W W W W W	+ddC N/A N/A N/A N/A N/A	+ddT 5561.67998 5890.88994 6204.09990 7022.61992 6404.22002	+ dd / 3 5570.689 1 5899.899 2 6213.109 2 7031.629 2 6413.230	A 998 941 902 922 002	+ddQ N/A N/A N/A N/A N/A

Dr. Peter M. Vallone

Actual langth (bases)	alalla 1	allala 2		
Actual length (bases)				
18	25.0	27.1	-7.0	-9.1
26	28.6	30.7	-2.6	-4.7
30	34.7	35.6	-4.7	-5.6
34	36.9	38.2	-2.9	-4.2
38	42.2	43.7	-4.2	-5.7
42	45.0	46.4	-3.0	-4.4
46	51.4	52.2	-5.4	-6.2
50	53.3	54.2	-3.3	-4.2
54	57.5	58.3	-3.5	-4.3
58	59.2	59.7	-1.2	-1.7

The use of Mass Spectrometry for SNP Genotyping

- •The speed of the MALDI TOF MS technique makes it a good candidate for quickly genotyping a large number of samples for a few (less than 10) SNP markers
- •Sample preparation, data collection, and data analysis are amenable to automation

