

Summary of SNP Assays					
	Adva	intages	Disadvan	itages	
ASPE-C	Moderate c	degree of	Development of	multiplex	
ASPE-N Microbe (Lumine)	Othe Py Chip Based Alle Invader- Orc Illum	er Techno rosequen d – Affyme le specific mismatch hid SNPs ina Bead	<u>logies</u> cing etrix - Agilent PCR cleavage tream Arrays	ultiplexing nt than CE custom	
(Lumine: Illumina Bead Arrays TaqMan Rapid - one step No multiplexing Good for one marker on 1000's of sample Costly for typing r				many SNPs	

Goals for Multiplex Assay Development

Working with collaborators who have markers of forensic interest

Evaluate the forensic utility of newly discovered markers (medium sized multiplexes 5 – 10 loci)

Further the understanding of developing multiplex assays (primer design, QC)

Publish assay details for others to evaluate (commercial and research)

Format of Template Sequences							
Locus	Total Length	Minimum	Maximum	Optimal	Excluded Region	SNP site	
М3	255	105	150	125	174,60	204	
TGATT	ATTTAGAAACA		АААСААТАА	СААААСА	ATGGTTCCCTGTT	AAATGTG	
M9	255	105	150	125	237,60	267	
	GCAUGUUAAA	GCGGAAG	CIGAAGIGU		TIGATCICICAAN	CIGGAG	
	Will be ada	Seque pted for	ences store FASTA for	ed in exo rmat & c	cel comma delimite	d	

S. Primer3_Parameters Primer3 formatting	
Desired Tm Range for PCR Primers	
Minimum Maximum Optimum Max Tm Difference	Max 3' Stability 9.0
57 63 60 1 12.0	Max 3' Mispriming 12.0
	Pair Max Mispriming 12.0
Desired Size Range for PCR Primers	
Minimum Maximum Optimum	Primer GC % 20.0 80.0
	Max Self Comp 8.0
Primers to Return	Max 3' Comp 3.0
	Max#N's 0
Set Parameters	Max Poly-X 3.0
Formats Primer3 parameters	Ct (nM) 50.0
	Salt Conc (mM) - KCI 50.0

Determir	natio	on of [DNA Oligon	ner Concentrations
		μM	% deviation	
Expected	1	173.3	42.3	
<mark>100 μM</mark>	2	164.8	39.3	
	3	155.0	35.5	
	4	124.1	19.4	Concentrations were
	5	116.4	14.1	readings @260 using
	6	98.5	-1.5	extinction coefficients
	7	108.6	7.9	determined from
	8	103.1	3.0	nearest-neighbor values
	9	120.8	17.2	
	10	79.6	-25.7	
	11	83.0	-20.5	

Publications Describing Multiplex Assay Design

Schoske, R., Vallone, P.M., Ruitberg, C.M., Butler, J.M. (2003) Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. *Anal. Bioanal. Chem.*, 375: 333-343.

Butler, J.M., Schoske, R., Vallone, P.M. Highly multiplexed assays for measuring polymorphisms on the Ychromosome. (2003) *Progress in Forensic Genetics 9* (Brinkmann, B. and Carracedo, A., eds.), Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1239, pp. 301-305.

Schoske, R., Vallone, P.M., Kline, M.C., Redman, J.W., Butler, J.M. (2003) High-throughput Y-STR typing of U.S. populations with 27 regions of the Y chromosome using two multiplex PCR assays, *Forensic Sci. Int., in press*

Butler, J.M. (2003) Constructing STR multiplex assays. *Methods in Molecular Biology: Forensic DNA Typing Protocols* (Carracedo, A., ed.), Humana Press: Totowa, New Jersey, *in press*.

Butler, J.M., Schoske, R., Vallone, P.M., Kline, M.C., Redd, A.J., Hammer, M.F. (2002) A novel multiplex for simultaneous amplification of 20 Y chromosome STR markers. *Forensic Sci. Int.* 129: 10-24.

Butler, J.M., David, V.A., O'Brien, S.J., Menotti-Raymond, M. (2002) The MeowPlex: a new DNA test using tetranucleotide STR markers for the domestic cat. *Profiles in DNA*, Promega Corporation, Volume 5, No. 2, pp. 7–10. http://www.promega.com/profiles/502/ProfilesInDNA_502_07.pdf

Butler, J.M., Devaney, J.M., Marino, M.A., Vallone, P.M. (2001) Quality control of PCR primers used in multiplex STR amplifications. *Forensic Sci. Int.*, 119: 87-96.

Butler, J.M., C.M. Ruitberg, Vallone, P.M. (2001) Capillary electrophoresis as a tool for optimization of multiplex PCR reactions, *Fresenius J. Anal. Chem.* 369: 200-205.

Tailed SNP primers allows for multiplexing in the SNaPshot assay				
	Sequences for 11 extension primers	i		
3010-F 4793-R 10211-R 5004-F 7028-F 7202-F 16519-R 12858-F 4580-R 477-F 14470-R	TGTTGGATCAGGACATCCC (T) ₄ – TCAGAAGTGAAAGGGGGC (T) ₁₀ – ACTAAGAAGAAATTTTATGGA (T) ₁₄ – A <u>G</u> ACCCAGCTACGCAAAATC (T) ₁₈ –GACACGTACTACGTTGTAGC (T) ₂₂ –CCACAACACTTTCTCGGCCT (T) ₂₄ –TGTGGGCTATTTAGGCTTTATG (T) ₂₇ –GCAGCCATTCAAGCAATCCTATA (T) ₂₉ –TGGTTAGAACTGGAATAAAAGCTAG (T) ₃₈ –CCCTCCCACTCCCATACTAC (T) ₄₁ –GGGAATGATGGTTGTCTTTGG	19 19 18 22 20 30 20 34 20 38 20 42 22 46 23 50 25 54 20 58 21 62		

User Interface of SNP Primer De	sign Program
Elle Run SNP_Parameters	×
Desired Tm Range for SNP Primers	
Minimum Maximum	
57 - 64 -	
Desired Size Range for SNP Primers	
Minimum Maximum	
18 - 28 -	
Primers to Return Ct (ukt) Salt Conc. (4)	
	Set Parameters

	La	abel	L	.ength	Se	quence	•	Position	Tm
Forwar	d Primers	s Salt = 0.3C	t = 10						
M42 34	0 bp (A/1	297 W) ACC	10889	18	ATTTAGGA	ACACAA	AAGCW	280	60.65398
M42 34	0 bp (A/T	297 W) ACC	10889	19	GATTTAGG	ACACAA	AAGCW	279	61.96716
M42 34	0 bp (A/T	297 W) ACC	10889	20	AGATTTAGO	GACACA	AAAGCW	278	63.67808
	Revers	e Primers							
M42 34	0 bp (A/T	297 W) ACC	10889	23	GCTCTCTTT	TCATTA	TGTAGTW	319	63.5462
M42 34	0 bp (A/1	297 W) ACC	10889	21	TCTCTTTT	CATTAT	GTAGTW	317	59.28964
M42 34	0 bp (A/T	297 W) ACC	10889	20	CTCTTTTTC	CATTATG	TAGTW	316	57 50257
									01100201
Hairpin	Dimer	Template	Mass	Rank	Mutation	+ddC	+ddT	+dd	A +dd(
Hairpin	Dimer	Template	Mass	Rank	Mutation	+ddC	+ddT	+dd/	A +dd(
Hairpin 4	Dimer 8	Template	Mass 5273.48	Rank 2.13333	Mutation 3 W	+ddC	+ddT 5561.6799	+dd/ 8 5570.68	A +dd(998 N/A
Hairpin 4 5	Dimer 8 10	Template 10 10	Mass 5273.48 5602.69	Rank 2.133333 2	Mutation 3 W W	+ddC N/A N/A	+ddT 5561.6799 5890.88994	+dd/ 8 5570.689 41 5899.899	A +dd(998 N/A 1941 N/A
Hairpin 4 5 5	Dimer 8 10 10	Template 10 10 11	Mass 5273.48 5602.69 5915.9	Rank 2.133333 2 2 2	Mutation 3 W W W	+ddC N/A N/A N/A	+ddT 5561.6799 5890.88994 6204.09999	+dd/ 8 5570.689 41 5899.899 02 6213.109	A +dd(998 N/A 9941 N/A 9902 N/A
Hairpin 4 5 5	Dimer 8 10 10	Template 10 10 11	Mass 5273.48 5602.69 5915.9	Rank 2.133333 2 2	Mutation 3 W W W	+ddC N/A N/A N/A	+ddT 5561.6799 5890.8899 6204.09990	+dd/ 8 5570.689 41 5899.899 02 6213.109	A +dd(998 N/A 1941 N/A 1902 N/A
Hairpin 4 5 5 4	Dimer 8 10 10 8 8	Template 10 10 11 22	Mass 5273.48 5602.69 5915.9 6734.42	Rank 2.133333 2 2 2.133333	Mutation 3 W W W 3 W	+ddC N/A N/A N/A	+ddT 5561.6799 5890.88994 6204.09990 7022.61999	+dd/ 8 5570.684 11 5899.899 22 6213.109 22 7031.629	A +dd(998 N/A 1941 N/A 1902 N/A
Hairpin 4 5 5 4 4 4	Dimer 8 10 10 8 8 8	Template 10 10 11 22 20	Mass 5273.48 5602.69 5915.9 6734.42 6116.02	Rank 2.133333 2 2 2.133333 2 2.133333 2.133333	Mutation W W W W W W W W W W W W W	+ddC N/A N/A N/A N/A N/A	+ddT 5561.6799 5890.8899 6204.09990 7022.61992 6404.2200	+dd, 8 5570.68 11 5899.895 22 6213.105 22 7031.625 2 6413.23	A +dd0 998 N/A 9941 N/A 9902 N/A 9922 N/A 9022 N/A
Hairpin 4 5 5 4 4 4 4 4	Dimer 8 10 10 8 8 8 8 8	Template 10 10 11 22 20 19	Mass 5273.48 5602.69 5915.9 6734.42 6116.02 5811.82	Rank 2.133333 2 2 2 2 2 2.133333 2.133333 2.133333	Mutation Mutation W W W W M M M M M M M M M M M M M M M	+ddC N/A N/A N/A N/A N/A N/A	+ddT 5561.6799 5890.8899 6204.09999 7022.61992 6404.2200 6100.01982	+dd, 8 5570.68 11 5899.899 22 6213.109 22 7031.629 2 6413.230 24 6109.029	A +dd0 998 N/A 9902 N/A 9922 N/A 902 N/A 902 N/A 902 N/A

11-plex mtSNP assay

Assay is capable of accurately detecting 11 mtSNP in a single assay

The 11-plex assay is currently being validated for case work samples at AFDIL

Manuscript has been submitted

Additional multiplex mtSNP assays are being developed for other common HV1/HV2 types in collaboration with AFDIL

Y-SNPs in U.S. populations

What haplogroups will be observed?

How specific will certain Y-SNPs be for a U.S. population group?

Forensic utility in comparison/addition to Y-STRs

Commercial kit (Marligen) 42 Y-SNPs

Medium sized multiplexes developed in-house (CE or MS)

Variation was not observed for 27 Y-SNPs (in AA and CAUC populations)								
<u>M175 +/-</u>	<u>M119 A/C</u>	<u>M37 C/T</u>						
<u>M146 A/C</u>	<u>M124 C/T</u>	<u>M87 T/C</u>						
<u>M32 T/C</u>	<u>M3 C/T</u>	M69 T/C						
<u>P3 (C/T)</u>	<u>M5 C/T</u>	<u>M112 G/A</u>						
P4 (G/A)	<u>M95 C/T</u>	M122 T/C						
M11 A/G	SRY465 C/T	M123 G/A						
M130 C/T	SRY9138 C/T	M137 T/C						
M174 T/C	M174 T/C M157 A/C M166 G/A							
M52 A/C	<u>M18 -/+</u>	P36						
<u>M52 A/C</u>	<u>M18 -/+</u>	<u>P36</u>						

Y-SNPs derived at greater than 25 % in more than one population							
Locus	All	AA	Cauc	Hisp	Нар		
<u>M207 A/G</u>	0.46	0.27	0.65	na	R		
<u>M45 G/A</u>	0.46	0.27	0.64	na	P-R		
<u>M89 C/T</u>	0.64	0.32	0.96	na	F-R		
P25 C/A	0.47	0.30	0.57	0.53	R1b		
<u>M9 C/G</u>	0.53	0.31	0.65	0.64	K-R		

Derived in more than one population						
Locus	All	AA	Cauc	Hisp	Нар	
<u>M2 A/G</u>	0.23	0.58	not obs	0.08	E3a	
DYS391 C/G	0.31	0.60	0.04	na	E3	
<u>M170 A/C</u>	0.10	0.04	0.21	0.04	I	
<u>M35 G/C</u>	0.02	0.02	0.03	na	E3b	
<u>M201 G/T</u>	0.03	0.01	0.03	0.05	G	
<u>SRY10831 A/G</u>	0.03	0.01	0.05	na	R1a	

Locus	All	AA	Cauc	Hisp
<u>M168 C/T</u>	0.01	0.03	not obs	na
<u>M42 A/T</u>	0.04	0.01	not obs	na
<u>M60 -/+</u>	0.01	0.02	not obs	not obs
M94 C/A	0.01	0.01	not obs	na
<u>M150 C/T</u>	0.01	0.01	not obs	na
M182 C/T	0.01	0.01	not obs	na
<u>M31 G/C</u>	0.01	0.01	not obs	na
M33 A/C	0.01	0.03	not obs	na
<u>M75 G/A</u>	0.01	0.03	not obs	na
M172 T/G	0.03	not obs	0.05	na
M198 C/T	0.03	not obs	0.05	na
Tat T/C	0.01	not obs	0.01	na
M153 T/A	0.01	not obs	0.01	na

Forensic Utility 51 Y-SNPs versus 1 Y-STR						
For N = 211 ma	le samples					
Amount of sample consumed	51Y-SNPs 10ng	<u>Y-STR DYS464</u> 1ng				
Number for types observed1862AnalysisMultiple1 reactionDegraded samples+?						

Γ

	r								
SRM 2395	AMEL	M207	M45	M89	DYS391	M2	M170	M172	M201
		(A/G)	(A/G)	(C/T)	(C/G)	(A/G)	(A/C)	(G/T)	(G/T)
Component A	XY	G	Α	Т	С	Α	Α	Т	G
Component B	XY	Α	G	Т	С	Α	Α	G	G
Component C	XY	Α	G	С	G	G	Α	Т	G
Component D	XY	Α	G	Т	С	Α	А	Т	Т
Component E	XY	Α	G	Т	С	Α	С	Т	G
Component F	XX								
50 Y SNPs measured across all samples									

