

vene y Well		y Amplimication Prior y S	Task	Ct	StdDen Ct	Othr
43	1a	Quantifiler Human	Linknown	26.40	Stubby St	4.96
	10	Quantifiler Human IPC	Upkpowp	20.40		4.30
A.4	1h	Quantifiler Human	Upkpowp	25.71		8.05
	110	Quantifiler Human IPC	Unknown	27.97		0.00
83	2a	Quantifiler Human	Unknown	27.16		2.94
	20	Quantifiler Human IPC	Unknown	27.58		2.04
84	2h	Quantifiler Human	Unknown	27.18		2.90
		Quantifiler Human IPC	Unknown	27.75		
3	3a	Quantifiler Human	Unknown	28.33		1.30
		Quantifiler Human IPC	Unknown	27.58		
C4	3b	Quantifiler Human	Unknown	28.31		1.32
		Quantifiler Human IPC	Unknown	27.69		
D3	4a	Quantifiler Human	Unknown	29.95		4.24e-001
		Quantifiler Human IPC	Unknown	27.57		
D4	4b	Quantifiler Human	Unknown	29.78		4.78e-001
		Quantifiler Human IPC	Unknown	27.60		
	An exam	Quantifiler Human IPC	Unknown eport from	27.60 the 7500 cc	ollection sc	oftware

	 Varying the Threshold Value Selecting 6 Threshold values then estimating IDNA1 for a sample run in duplicate 								
			Est D	NA conce	entration	na/uL			
		Threshold	[A]	[B]	[Avg]	Stdev			
	Low	0.004	23.51	24.48	24.00	0.69			
	Low	0.01	23.18	21.12	22.15	1.46			
	Below Opt	0.1	18.83	18.1	18.47	0.52)		
	Optimal	0.2	17.13	18.13	17.63	0.71	<mark>1.3 ng/μL</mark>		
	Above Opt	0.25	17.5	16.83	17.17	0.47			
	High	1.7	17.58	16.68	17.13	0.64	J		
	~6.8 ng/μL difference (max)								
Pete	er M. Vallone qPCR Clas	s 2009							

Varying the Threshold Value							
	for a samr	ole run in	dunlicate	sumat	ing		
			auphoate	Rx	n efficier	ncy	
	Threshold	R2	slope	E	E -1		
Low	0.004	0.989	-3.474	1.94	0.94		
Low	0.01	0.991	-3.336	1.99	0.99		
Below Opt	0.1	0.994	-3.289	2.01	1.01		
Optimal	0.2	0.994	-3.317	2.00	1.00		
Above Opt	0.25	0.995	-3.322	2.00	1.00		
High	1.7	0.993	-3.421	1.96	0.96		
Amp efficiency							
Peter M. Vallone gPCR Class 2009							

qPCR Target Region								
Assay	Marker	Chromosome	Copy	Amplicon Size (bp)				
Quantifiler	SRY	5 V	Single	64				
Quantifiler Duo	RPPH1 SRY	14 Y	Single Single	140 130				
Plexor HY	RNU2 TSPY/DYZ5	17 Y 11	Multi Multi Single Single Single Multi Multi	99 133 62				
Richard - Toronto	HUMTH01							
Timken - CA DOJ	CSF-1 HUMTH01	5 11		67 ~180				
Buel - Vermont	Alu DYZ5	"_" Y		124 137				
Allen - Uppsala	Retinoblastoma 1 mito tRNA Lys Gene	13 Mitochondria	Single Single	79 143				

Dye Characteristics								
 Some fluorescent dyes commonly used in qPCR 								
Dye	Dye Excitation (nm) Emission (nm)							
SYBR	497	520						
FAM	495	520						
TET	521	536						
JOE	520	548						
VIC		~555						
HEX	535	556						
R6G	524	557						
Cy3	550	570						
TAMRA	555	576						
NED		~576						
Cy3.5	581	596						
ROX	575	602						
Texas Red	583	603						
Cy5	649	670						
Cy5.5	675	694						
Peter M. Vallone qPCR Class 2009			•					

Detecting Multiple Dyes								
 Multiplexing from an instrument perspective 								
	Dye Excitation (nm) Emission (nm)							
	SYBRI	497	520					
	FAM	495	520	1				
	TET	521	536	2				
	JOE	520	548					
	VIC		~555	Singleplex	- FAM			
	HEX	535	556	Duplex - FA	AM,VIC			
	R6G	524	557	Triplex - FA	AM,VIC,NED			
	Cy3	550	570	3				
	TAMRA	555	576					
	NED		~576					
	Cy3.5	581	596	4				
	ROX	575	602	5				
	Texas Red	583	603					
	Cy5	649	670	6				
	Cy5.5	675	694	7				
Peter M. Vallone	e qPCR Class 2009				-			

Peter M. Vallone qPCR Class 2009

	qPCR Bibliography
1.	Andreasson, H. and Allen, M. (2003) Rapid quantification and sex determination of forensic evidence materials, <i>J. Forensic Sci. 48</i> , 1280-1287.
2.	Andreasson, H., Nilsson, M., Budowle, B., Lundberg, H., and Allen, M. (2006) Nuclear and mitochondrial DNA quantification of various forensic materials, <i>Forensic Sci. Int.</i> 164, 56-64.
3.	Green, R. L., Roinestad, I. C., Boland, C., and Hennessy, L. K. (2005) Developmental validation of the quantifiler real-time PCR kits for the quantification of human nuclear DNA samples, <i>J. Forensic Sci. 50</i> , 809-825.
4.	Hudlow, W., Chong, M., Swango, K., Timken, M., and Buoncristiani, M. (2008) A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: A diagnostic tool for STR typing. <i>Forensic</i> <i>Science International: Genetics</i> 2, 108-125.
5.	Kline, M. C., Duewer, D. L., Redman, J. W., and Butler, J. M. (2005) Results from the NIST 2004 DNA Quantitation Study, <i>J. Forensic Sci.</i> 50, 570-578.
6.	Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., Stahlberg, A., and Zoric, N. (2006) The real-time polymerase chain reaction, <i>Mol. Aspects Med.</i> 27, 95-125.
7.	Nicklas, J. A. and Buel, E. (2003) Development of an Alu-based, real-time PCR method for quantitation of human DNA in forensic samples, <i>J. Forensic Sci.</i> 48, 936-944.
8.	Nicklas, J. A. and Buel, E. (2003) Quantification of DNA in forensic samples, Anal. Bioanal. Chem. 376, 1160-1167.
9.	Nicklas, J. A. and Buel, E. (2003) Development of an Alu-based, QSY 7-labeled primer PCR method for quantitation of human DNA in forensic samples, <i>J. Forensic Sci.</i> 48, 282-291.
10.	Nicklas, J. A. and Buel, E. (2005) An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples, <i>J. Forensic Sci. 50</i> , 1081-1090.
11.	Nicklas, J. A. and Buel, E. (2006) Simultaneous determination of total human and male DNA using a duplex real-time PCR assay, <i>J. Forensic Sci.</i> 51, 1005-1015.

	qPCR Bibliography
12.	Richard, M. L., Frappier, R. H., and Newman, J. C. (2003) Developmental validation of a real-time quantitative PCR assay for automated quantification of human DNA, <i>J. Forensic Sci.</i> 48, 1041-1046.
13.	Shewale, J. G., Schneida, E., Wilson, J., Walker, J. A., Batzer, M. A., and Sinha, S. K. (2007) Human genomic DNA quantitation system, H-Quant: development and validation for use in forensic casework, <i>J. Forensic Sci. 52</i> , 364-370.
14.	Swango, K. L., Timken, M. D., Chong, M. D., and Buoncristiani, M. R. (2006) A quantitative PCR assay for the assessment of DNA degradation in forensic samples, <i>Forensic Sci. Int. 158</i> , 14-26.
15.	Swango, K. L., Hudlow, W. R., Timken, M. D., and Buoncristiani, M. R. (2007) Developmental validation of a multiplex qPCR assay for assessing the quantity and quality of nuclear DNA in forensic samples, <i>Forensic Sci. Int.</i> 170, 35-45.
16.	Timken, M. D., Swango, K. L., Orrego, C., and Buoncristiani, M. R. (2005) A duplex real- time qPCR assay for the quantification of human nuclear and mitochondrial DNA in forensic samples: implications for quantifying DNA in degraded samples, <i>J. Forensic Sci.</i> <i>50</i> , 1044-1060.
17.	Walker, J. A., Hughes, D. A., Hedges, D. J., Anders, B. A., Laborde, M. E., Shewale, J., Sinha, S. K., and Batzer, M. A. (2004) Quantitative PCR for DNA identification based on genome-specific interspersed repetitive elements, <i>Genomics</i> 83, 518-527.
18.	Walker, J. A., Hedges, D. J., Perodeau, B. P., Landry, K. E., Stoilova, N., Laborde, M. E., Shewale, J., Sinha, S. K., and Batzer, M. A. (2005) Multiplex polymerase chain reaction for simultaneous quantitation of human nuclear, mitochondrial, and male Y-chromosome DNA: application in human identification, <i>Anal. Biochem.</i> 337, 89-97.
19.	Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993) Kinetic PCR analysis: real- time monitoring of DNA amplification reactions, <i>Biotechnology (N. Y.) 11</i> , 1026-1030.
Peter M. Vallone	PCR Class 2009

 Designing an Experiment The experiment plate may look something like: 									
	А	10 ng	10 ng	1a	1b	May vary:			
	В	4	4	2a	2b	Range of dilutions			
	С	1.6	1.6	3a	3b	Spacing of dilutions			
	D	0.64	0.64	4a	4b				
	E	0.256	0.256	5a	5b				
	F	0.102	0.102	6a	6b				
	G	0.041	0.041	7a	7b				
	Н	NTC	NTC	NTC	NTC				
Standards Samples									
Peter M. Vallone q	PCR Class 2009								

2	7500 Syste	m SDS Soft	ware - [QI	filer data se	t.sds (Abso	lute Qua	ntification)]					_ 🗆 ×			
	File View	Tools Inst	rument Ar	halysis Wind	ow Help							_ 8 ×			
73	etup V lastrum				A8 ¥										
ľ	late	-		1 .	1 -	1 -		-		1	1	[
A	10pg A	2 10pg B	1a	1h	5	8h	7	8	9	10	11	12			
["	S 1.00e+00	S 1.00e+0	D <mark>U</mark>	Ū	U	Ū	•Open	data t	file *.S	SDS fi	le				
L	<u> </u>	u	<u>u</u>			ш	- •Click on "Setup" Tab								
В	4ng_A \$ 4.00e+00	4ng_B S 4.00e+0	2a 0 <mark>11</mark>	2b	9a	9b	•48 we		ed						
		U		U	U			no 40		ibront					
с	1.6ng_A	1.6ng_B	3a	3b	10a	10b	•Colum	ins i-	2 Car	Diant					
	S 1.60e+00	S 1.60e+0		U			•Colum	ins 3-	6 Unk	nown	IS				
	640pg A	640pg B	4a	4b	11a		•Row H	1 – N	TC (no	on-ten	nplate	contro			
	S 6.40e-00	S 6.40e-00) <mark>U</mark>	U.	U.	U									
-	05000.0			1	40-	4.0%	Kev:								
Ľ	256pg_A S 2.56e-00	256pg_8 S 2.56e-00	ba U	SD U	12a	120	Diug	ЬТС		A N A)					
					U		•Blue –	- NIE	RI (F	AIVI)					
F	102pg_A	102pg_B	6a	6b	13a	S13b	•Green	-IP(C (VIC	C)					
	0 1.020-00	0	Ū	Ŭ	U	ŭ	•S = sta	andar	ď						
G	41pg_A	41pg_B	7a	7b	14a	14b	•U = U	hknov	wn						
	S 4.10e-00:	S 4.10e-00	0:0	U	UUU										
┢	NTC s1	NTC 82	NTC a	NTC b	NTC c	NTC d									
l		U													

Data Analys	sis - Instrument
7500 System SDS Software - [Qfiler data set.sds (Absolute) File File File File	2 Quantification)]
Instrument Lonitol State Stop Disconnect Status:	Temperature Sample: Heat Sink: Cover: Block: Cycle Stage: Rep: Time (mm:ss): Step: State
Thermal Cycler Protocol Thermal Profile Auto Increment Ramp Rate Stage 1 Stage 2 Reps: [1 Reps: [40] 10:00 0:15 We	can review the thermal cycling
Indextupe Add Hold Add Blep Add Disson Settings Sample Volume (µL): 20 If 8600 Emulator Ready Ready PCR Class 2009 If 8600 Emulator	atom Stage Uelee Help

S 15	o View To-I	surtware - Lunier	uata set.sus (i iz Window - U	Ausoidte Qu	antincation)					
		Instrument Analys		, ah						
	≥ u ⊜ ⊡	ן א 🖾 🔁 👔	» 8a 🔟							
/ Setup	Y instrument YR	tesults			J No					
Well	Sample Name	Detector	Task		StdDen Ct	Obr	Mean Obr	StdDen Obr	Filtered	Tm
AB	1a	Ouentifiler Human	Linknown	26.40	Stubevect	4.06	Inicall wy	Stubev ety	TIRCICU	
~ ~	Ta	Quantifiler Human IP	Unknown	27.65		4.30				
B3	2a	Quantifiler Human	Unknown	27.16		2.94				
		Quantifiler Human IP	Unknown	27.58	1					
C3	3a	Quantifiler Human	Unknown	28.33		1.30				
		Quantifiler Human IP	Unknown	27.58						
D3	4a	Quantifiler Human	Unknown	29.95		4.24e-001				
		Quantifiler Human IP	Unknown	27.57						
E3	5a	Quantifiler Human	Unknown	31.30		1.66e-001				
		Quantifiler Human IP	Unknown	27.52						
F3	6a	Quantifiler Human	Unknown	32.06		9.79e-002				
		Quantifiler Human IP	Unknown	27.51						
G3	7a	Quantifiler Human	Unknown	32.53		7.09e-002				
		Quantifiler Human IP	Unknown	27.59						
нз	NTC_a	Quantifiler Human	Unknown	Undet.						
		Quantifiler Human IP	Unknown	27.76						
A S B S C S D S	1 50 0 80 0 80 0 80	2 3 UU UU UU UU	4 000000000000000000000000000000000000	F CO	Selecti cc or the ncentr	ng we incent Stand ation y	lls will ration o ards th /ou set	give th of that nat valu t (no es	ie esti samp ue will stimat	mateo le be th e mac

File Image: Constraint of the sector Image: Constraint of the sector Image: Constraint of the sector Image: Constraint of the sector	e View Tools										- 12
∫ [] (ZSetup		instrument Analys	is Window	Help						_	8
/ Settp	🎽 🔒 🔒 🖻	l 🔍 🗹 🎫 🔰	8A 💽 🗸	?							
	Y instrument YR	esults)/-						
/ Pate Well	y spectra y Comp Sample Name	Detector	not y Stand Task	and Cinx y D	StdDev C	t Ontv	Mean Ofv	StdDev Otv	Filtered	Tm	T
A3	1a	Quantifiler Human	Unknown	26.40		4.96					-
		Quantifiler Human IP	Unknown	27.65							
B3	2a	Select Results F	vnort File			1		2			
<u></u>	20		nporerite								-
	Ja	Save in	: 🔁 Export	Files		<u> </u>	= 🖆 🖽]-			
D3	4a		Sample i	int std.csv							
		s 🚺									
E3	5a	History									-1
F3	6a	1 📶									-1
10	0a				~						-1
G3	7a	C Desktop			Sa	ve data	11				
		A 10 and									
НЗ	NTC_a										-
		My Documents									_
		My Computer									
			l								
			File name:	Ofiler	data set		-	Save			
		My Network P	Courses to	,	As French F2 /	*		Concel			
	1 2		o ave as typ	re. Hesu	ats Export Files (.csvj	<u> </u>	Lancer		1:	2
A S	U SU		UU	UU	UU						
BS										_	
										_	
F S											
<u>- "</u>											
FIS									1	1	
F S G S		UU	UU	UU	UU						

