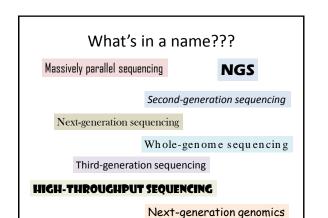
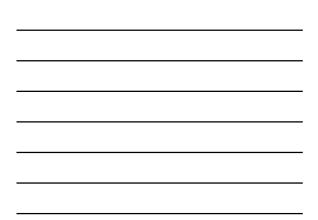
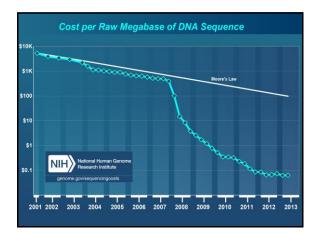
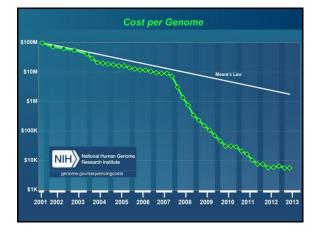

Disclaimer


- Forensic DNA research conducted at NIST is supported by an interagency agreement between the National Institute of Justice and the NIST Law Enforcement Standards Office.
- Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. <u>Certain</u> <u>commercial equipment, instruments, and materials are</u> <u>identified in order to specify experimental procedures as</u> <u>completely as possible.</u>
- In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.

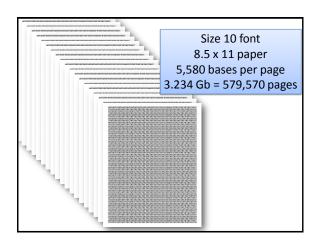
Disclaimer


- The NIST talks today are intended for educational purposes
- Technology is moving at a fast pace
- If your favorite platform, application, library prep, software, etc. is not mentioned Please bring it up!!!

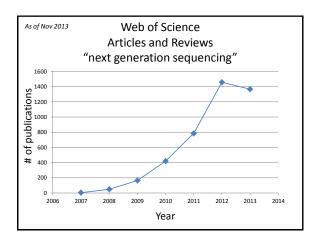

	Parallel Sequencing							
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	'A milli	on capilla	ry Sanger	sequence	r'			
8-8-8		8-8-	8-8-	8-8-	8 - 8 -	-		
a- a- a				= = =		-		
8-8-8								
8-8-8	s- s-		8-8-	= = -	8-8-			

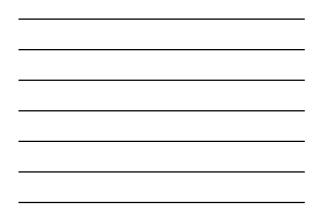


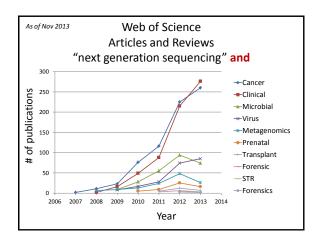
Parallel Sequencing

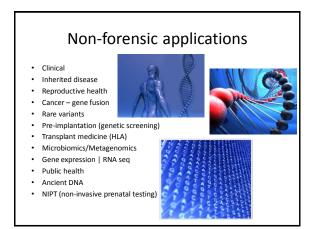

'A million capillary Sanger sequencer'

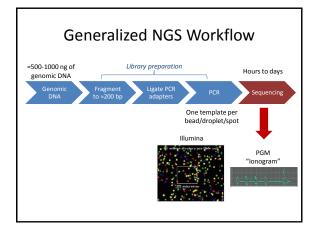
- Clonal vs population amplification
- Shorter reads (Range 75 to 400)
- Errors are more 'detectable'
- High coverage 100 1000 10,000x
- Rely more on informatics to assemble millions of short reads

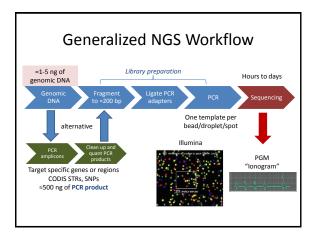


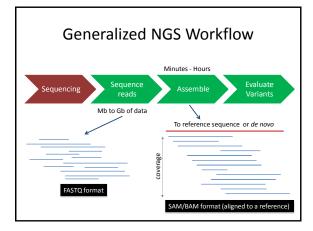




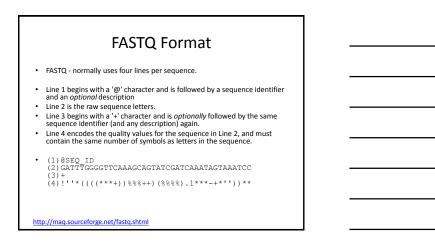






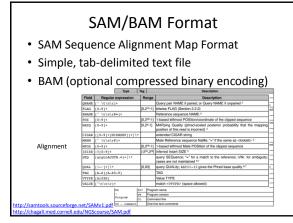


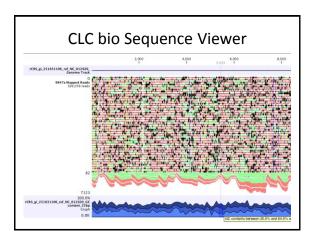
Whole Genome versus Targeted


- Whole genome
 - Genomic DNA sheared and sequenced
 - 500-1000 ng of DNA template

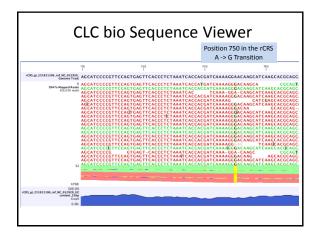
Targeted

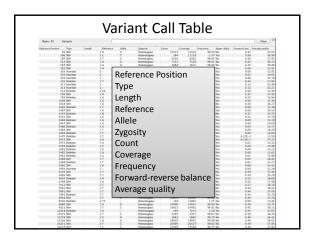
- PCR amplified or hybridization captured regions of the genome are sheared and sequenced
 - Start with 1-5 ng of DNA -> amplify/enrich to 500-1000 ng

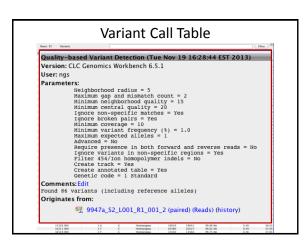


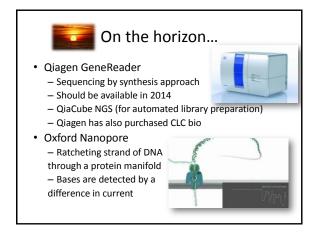

Aligning Sequencing Reads

• One common algorithm is BWA


- Burrows-Wheeler Aligner
- Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.
- Li H. and Durbin R. (2010) Fast and accurate longread alignment with Burrows-Wheeler Transform.
 Bioinformatics, Epub. Considerations when choosing an





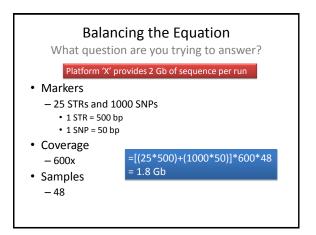


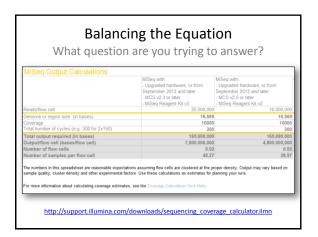
Moving Targets

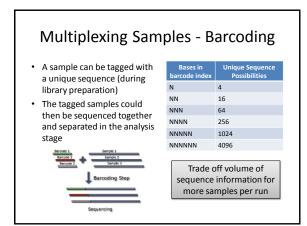
6 months from now these parameters will have changed

- Newer instruments
- Costs decreasing
- Throughput increasing
- Read lengths increasing
- Chemistries improving
- Library preparations simpler/automated
- Computers faster data storage cheaper
- Platforms leaving the market (e.g. Roche 454)
- Platforms entering the market (e.g. Qiagen GeneReader)

Low Throughput versus High Throughput						
	Illumina MiSeq	lon Torrent PGM	PacBio RS	Illumina GAIIx	Illumina HiSeq 2000	
	Bend	:htop	High Throughput			
Instrument Cost	\$128 K	\$80 K	\$695 K	\$256 K	\$654 K	
Sequence yield per run	1.5-2 Gb	100-200 Mb 316 chip	100 Mb	30 Gb	600 Gb	
Cost/Gb	\$502	\$1000	\$2000	\$148	\$41	
Run time	27 hours	2 hours	2 hours	10 days	11 days	
Observed raw error rate	0.80 %	1.71 %	12.26 %	0.76 %	0.26 %	
Read length	150 (300)	200 (400)	1500	150	150	
Input DNA	50-1000 ng	100-1000 ng	1 ug	50-1000 ng	50-1000 ng	
Adapted from: Quail et al. BMC Genomics 2012, 13:341 http://www.biomedcentral.com/1471-2164/13/341						

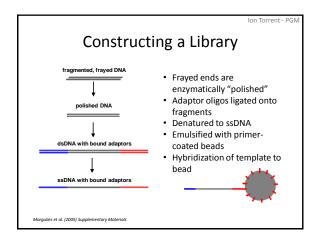

Balancing the Equation

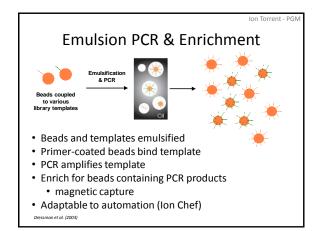

Desired level of accuracy?


Integrity of DNA? Mixtures present?

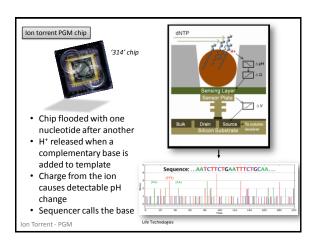
What question are you trying to answer?

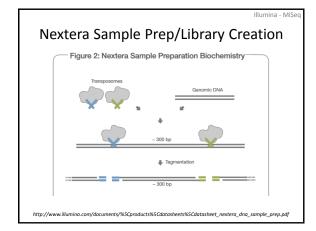
- What instrument and/or strategy is right for my application?
- Markers
- Coverage
- Samples
- Cost (per sample and unit of information)

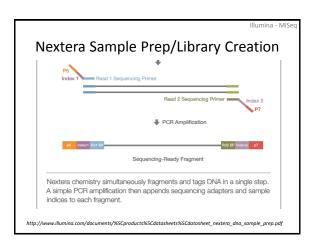




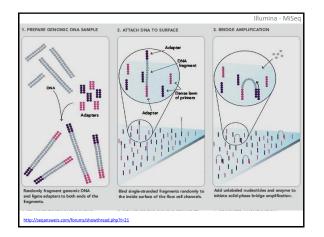
Life Tech - Ion Torrent - PGM


- Ion Torrent launched in Feb. 2010
- Ion Torrent sequencing employs an analogous technique as pyrosequencing:
 - Emulsion PCR for single copy reactors
 - Non-labeled nucleotide triphosphates are flowed over a bead on a semiconductor surface
- Hydrogen Ion detection
 - pH change is detected
 - No optics

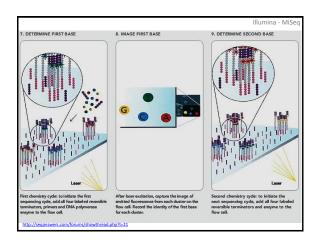


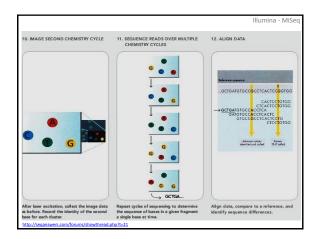

Illumina MiSeq

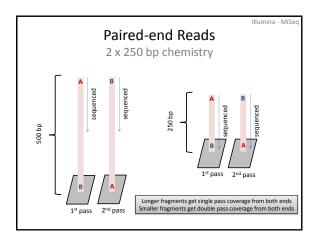
- MiSeq launched in Jan. 2011
- The MiSeq uses a sequencing by synthesis approach:
 - Nextera enzymatically fragments and tags DNA
 - Limited cycle PCR
 - Flow cell hybridization
 - Bridge PCR clusters
- Fluorescent light detection
 - Each base has a unique color
 - Sequence each end of the molecule



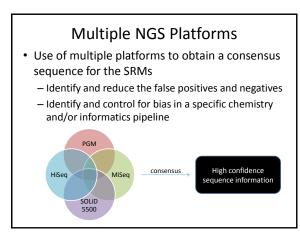








Topics for further thought

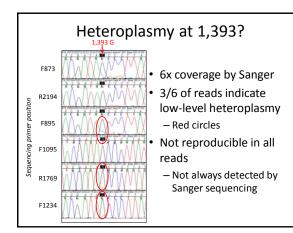

- Additional genetic markers
 - SNPs (ancestry, phenotypic traits, lineage)
 - Insertion Deletion (InDels)
- Data interpretation and review level of retention
- STR nomenclature
 - Back compatibility with existing databases
 - Future searching methods
- Ethical considerations with coding region markers
- Validation of NGS systems/methods

 Use of existing standards (SRMs)

NIST SRM Support

- Further characterization of SRM 2391c, 2392, and 2392-I
- In depth sequencing of mitochondrial genomes and core STR alleles
 - Sanger
 - NGS (PGM and MiSeq)
 - Posters presented at the 25th annual ISFG meeting

"Additional Sequence Characterization of NIST SRM 2391c: PCR-Based DNA Profiling Standard" http://www.cstl.nist.gov/strbase/pub_pres/Hill-ISFG2013-SRM2391c.pdf "Characterization of NIST Standard Reference Materials by Next Generation Sequencing" http://www.rstl.nist.gov/strbase/pub_pres/tises/ISF2013oster.pdf



Mitochondrial SRMs False Positives and False Negatives Using platform specific informatics pipeline							
		PGM 1	PGM 2	PGM 3	HiSeq	MiSeq	5500
9947A	FP	1	5	3	21	9	11
	FN	3	4	3	3	3	3
CHR	FP	2	6	10	21	9	10
	FN	3	5	4	3	3	4
HL-60	FP	1	8	8	20	9	8
	FN	1	2	1	1	1	1
Avg Coverage		280	6,500	9,000	49,000	41,000	29,000
	Calls made to the rCRS On average 99.94 % agreement with Sanger sequencing						

Heteroplasmy at Position 1,393Sub 230 Composed B (99478)Introduction 1 do 10 do

Heteroplasmy detected by NGS at Site 1,393

• Agreement across platforms (high confidence)

≈ 17.6% (± 2.6%) minor component "A"

Experiment	Reference "G"	Variant "A"	Coverage
EdgeBio PGM	77.3%	22.7%	97 x
NIST PGM Run 1	82.5%	17.5%	2940 x
NIST PGM Run 2	83.4%	16.6%	3275 x
Illumina MiSeq	83.7%	16.3%	26,234 x
Illumina HiSeq	84.4%	15.6%	62,186 x
NIST SOLID	82.5%	16.9%	24,226 x

Site 1,393 also confirmed by Niels Morling's lab using 454 technology (Martin Mikkelsen)

