

Outline

- What is a Biometric?
- Rapid PCR Protocols
- DNA Typing on Integrated Systems

What is a Biometric?

Method for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits

Characteristics of a Biometric

Universality

- each person should have the characteristic
- Uniqueness
 is how well the biometric separates individuals from another
- Permanence
 - measures how well a biometric resists aging and variance over time
- Collectability
 - ease of acquisition for measurement

Characteristics of a Biometric (practical considerations)

Performance

 accuracy, speed, and robustness of technology used

- Acceptability - degree of approval of a technology
- Circumvention – ease of use of a substitute

Modes of Use

- Enrollment Capturing and storing the biometric into a database
- Verification A one to one comparison of a captured biometric with a stored template to verify/confirm identity
- Identification A one to many comparison of the captured biometric against a biometric database in attempt to identify an unknown individual

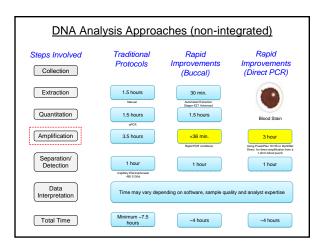
DNA Typing as a Biometric

Advantages

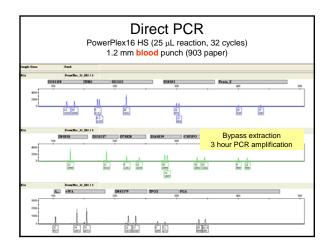
- High level of accuracy
 (Gold Standard)
- Solid foundation of Forensic DNA Testing (pop stats, molecular biology, court acceptance, protocols, training, education)
- Kinship determination (unique to DNA)
 - fo
 - Potential use for: - Phenotype (traits; eye/hair color)
 - Ancestry

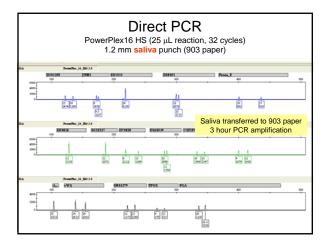
- Expensive
- Time consuming
- Sample collection (invasive, stability issues)

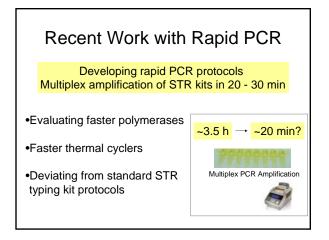
Challenges

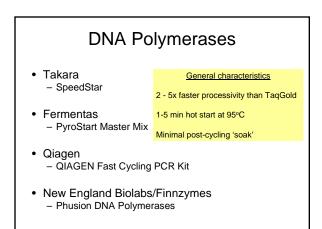

- Technical expertise required for analysis
- Low level template, mixtures, PCR inhibition
- Policy/Privacy/Ethical issues

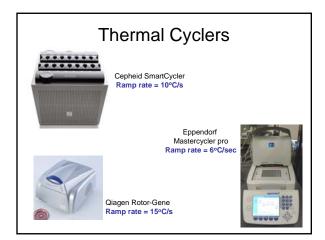
Interest in Rapid DNA Typing

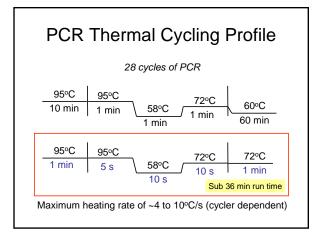

- DoD (field testing, rapid intelligence, mass fatalities)
- DHS (kinship determination, border security, immigration)
- DoJ (law enforcement, initial information)
- Industry (security, authentication)
- · Each customer will have specific requirements
 - sample input
- The time required for
- information output generating a STR profile will
- degrees of 'accuracy' have to be significantly reduced

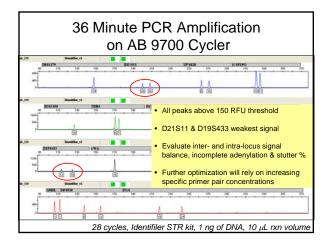

- Similar to collecting a reference sample – Single source, human specific
 - No quantitation
- Collected on site (buccal swab)
 Not sample limited
 - > 100 ng of template DNA
 - No mixtures, no LCN, no inhibitors

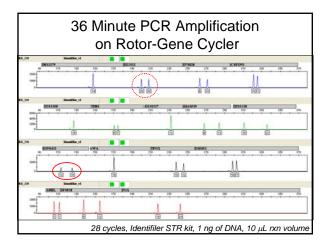


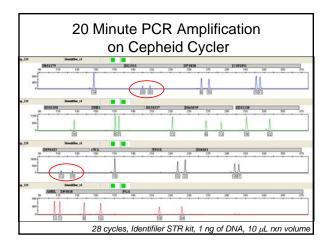


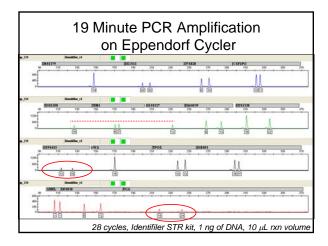


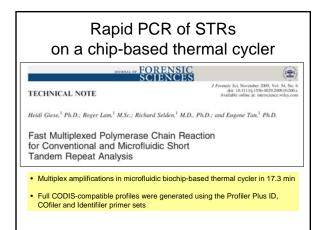


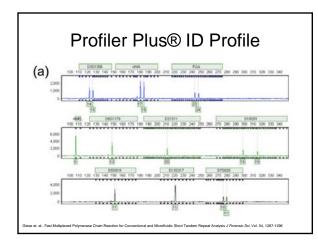


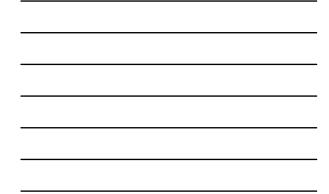




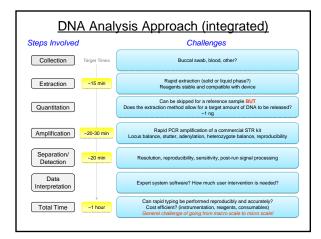








	Rapid PCR Article
	ARTICLE IN PRESS
	Short communication Demonstration of rapid multiplex PCR amplification involving 16 genetic loci ¹⁰ Peter M. Valkoe ⁺ , Carolyn R. Hill, John M. Butter and Antone (Journa Orbana), Bochanikas (Internet New York Stat See 215, Calibrate, MD 2008 / 211; Unit Stat
Vallone	a, P.M., Hill, C.R., Butler, J.M. (2008) Demonstration of rapid multiplex PCR amplification involving 16 genetic loci. FSI Genetics 3(1): 42-45.
	R Amplification of STR Typing Kits 20th Annual International Symposium on Human ion (Promega Meeting) October 14, 2009, Las Vegas, NV
	plification of Commercial STR Typing Kits, International Society of Forensic Genetics (ISFG), er 16, 2009, Buenos Aires, Argentina
	http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

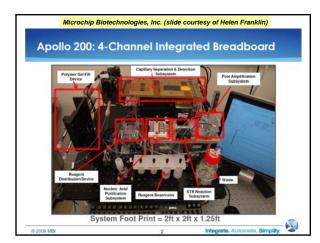


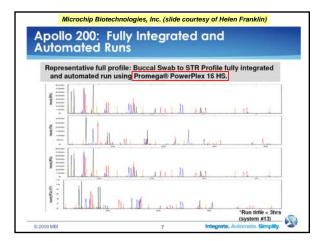
Current State of Rapid PCR Protocols

- Rapid amplification of at least 16 loci is possible
 17.3 minutes
- Faster DNA polymerases and thermal cyclers are required
- Optimized rapid STR typing kits could be produced for
 chip based thermal cyclers
 standard bench top cyclers
- Success with ~1 ng of DNA template (single source)
- Sub 45 minute PCR will be essential for rapid typing in a integrated/ portable system

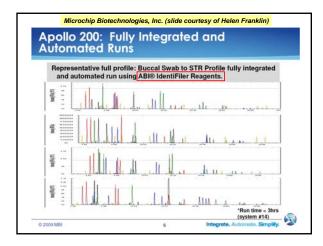
Goals for Rapid DNA Typing Systems

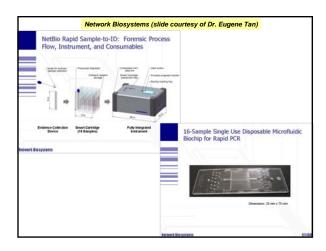
- Develop an integrated system capable of performing DNA testing in less than 1 hour
- Little user interaction (or experience)
- Rugged
 Swab in...answer out
- Robust
- Simple data interpretation
- 4-16 samples per run
- Disposable chips (with reagents on board)

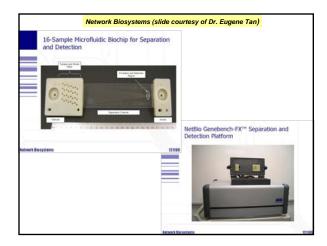


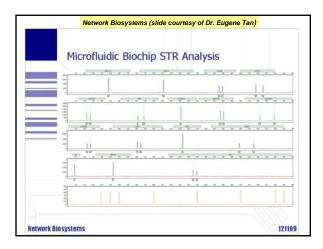

Rapid DNA Typing Systems Under Development

- The following slides were generously shared by the developers of integrated DNA typing instrumentation
- The systems are currently under development and are not yet commercially available
- ٠ Network Biosystems (Woburn, MA) http://www.netbio.com
- MicroLab Diagnostics and Lockheed Martin (Charlottesville, VA) • bdiagnosti
- Microchip Biotechnologies, Inc. (Pleasanton, CA) . http://www.microchipbiotech.com Forensic Science Service (UK)
- ٠ http://www.forensic.gov.uk/

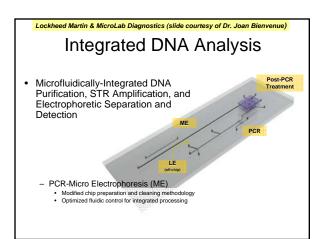

Friday Session I - Robotics and New Technology 8 AM - 10 AM

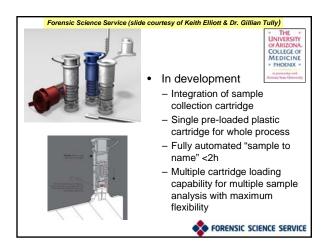












- Wet swab sample to analysis ~ 75 min; partial profile •Liquid Extraction

 - IR light source improvement On-box syringe heater Analysis software improvements Configured for future growth

Primary Aim: Evidential Quality	tesy of Keith Elliott & Dr. Gillian Tully)
 Current status 	-
 Single sample: reduce error 	
 Off chip lysis - flexibility 	4 hours
 Lysate to profile with no manual intervention 	
- Plastic integrated cartridge	
 Integrated transfer to glass CE chip (1.2bp resolution) 	
	FORENSIC SCIENCE SERVICE

Benefits of Developing Integrated Devices

Potential

- Pushing technology and reagent development forward
 - Faster methods of DNA extraction
 - Faster PCR cycling protocols, optimized STR kits
 - Alternative chip electrophoresis, faster separations
- Advances can be applied to benefit DNA typing performed in a lab setting

 after proper validation studies

http://www.cstl.nist.gov/biotech/strbase/pub_pres/ValloneAAFS2010.pdf

Benefits of Developing Integrated Devices

- Functional prototypes should be available for testing in the next 12-18 months
- 3-4 year horizon until concordance testing and validation
- The use of rapid DNA testing as a biometric would have an impact in various areas: field testing, reference samples, rapid intelligence, mass fatalities, kinship determination, airport and border security, immigration, booking stations
 - other identification needs e.g., bioagent/pathogen detection, clinical diagnostics

Resources & Websites

- FBI Biometric Center of Excellence - http://www.biometriccoe.gov
- Biometric Consortium
 - http://www.biometrics.org/
- · Biometrics.gov - http://www.biometrics.gov/default.aspx
- IEEE Biometrics Council
 - <u>http://ieee-biometrics.org/</u>
- Biometric Task Force
 - http://www.biometrics.dod.mil/

Acknowledgements

- Erica Butts (NIST)
- Erica Butts (NIST) Dr. Kristen Lewis (NIST) •
- Helen Franklin (Microchip Biotechnologies)
- Dr. Eugene Tan (Network Biosystems)
- Dr. Joan Bienvenue (Lockheed Martin)
- Dr. Gillian Tully, Keith Elliott and Dr. Andrew Hopwood (FSS) •
- FBI for funding (Evaluation of DNA as a Biometric)

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm peter.vallone@nist.gov