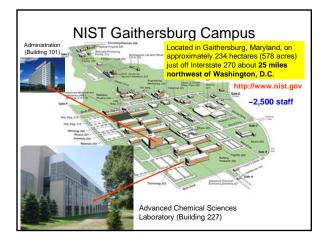
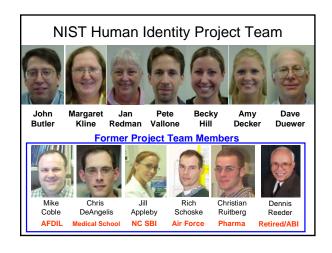
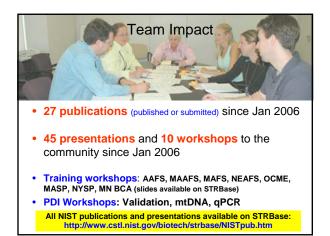

NIST Human Identity Team Projects

John M. Butler

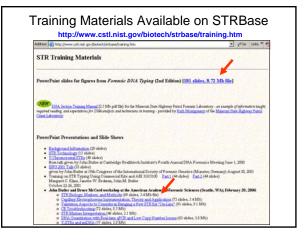
National Institute of Standards and Technology Human Identity Project Team "Leading the Way in Forensic DNA..."


> Presentation to USACIL November 14, 2006 Forest Park, GA




Presentation Outline

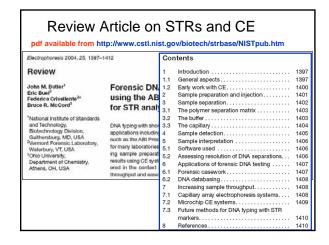
- Team Members and Projects
- Training Workshops Conducted
- Technology Efforts
 - miniSTRs
 - Y-STRs
 - mtDNA
 - DNA Quantitation (qPCR)
 - STR Allele Sequencing
 - SNPs
 - Expert systems
 - Validation
 - Software
- Mixture Interpretation Interlab Study MIX05



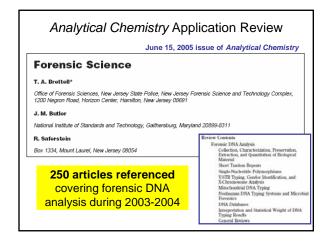
AAFS Workshop #6 (Feb 2006, Seattle) Advanced Topics in STR DNA Analysis Instructors: John Butler and Bruce McCord For DNA analysts using the ABI 310 or ABI 3100 who would like to better understand the underlying issues and science involved with STR DNA typing • STR Biology, Markers, and Methods

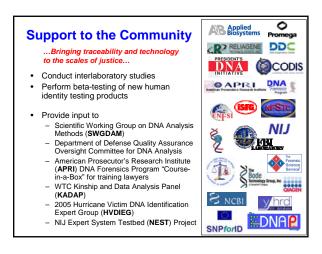
- Capillary Electrophoresis Instrumentation: Theory and Application
- Validation Aspects to Consider in Bringing a New STR Kit "On-line"
- CE Troubleshooting
- STR Mixture Interpretation
- DNA Quantitation with Real-Time qPCR
- Low-copy Number Issues
- Y-STRs and mtDNA

Available at http://www.cstl.nist.gov/biotech/strbase/training.htm



John Pete Butler Vallone


Training Materials/Review Articles


- Workshops on **STRs and CE** (ABI 310/3100) and Other Issues – John Butler with Bruce McCord, FIU – AAES NYSP MASP NEAES MARES NYC OCME MN BCA Mavi
- AAFS, NYSP, MASP, NEAFS, MAAFS, NYC OCME, MN BCA, Mexico
 PDI/NESTC Workshops
- PDI/NFSTC Workshops - Validation (John Butler with Robyn Ragsdale, FDLE) – Aug 2005
- mtDNA (Mike Coble with Suni Edson, AFDIL) Mar 2006
 qPCR (Pete Vallone with Cristian Orrego, CA DOJ) July 2006
- PowerPoint slides from Forensic DNA Typing, 2nd Edition
 >150 slides available now (~1,000 planned) for download
 http://www.cstl.nist.gov/biotech/strbase/FDT2e.htm
- Review articles
 - ABI 310 and 3100 chemistry Electrophoresis 2004, 25, 1397-1412
 Core STR loci J. Forensic Sci. 2006, 51, 253-265

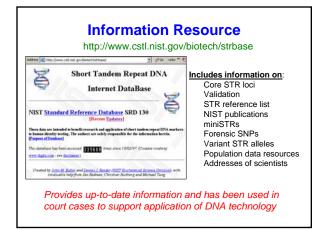
http://www.cstl.nist.gov/biotech/strbase/training.htm http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

National Institute of Justice The Research Development and Evaluation Among of the U.S. Department of Justice

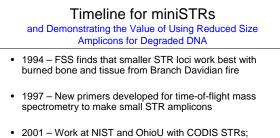
Current Areas of NIST Effort with Forensic DNA

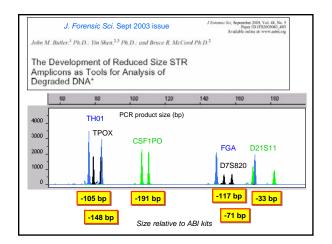

- Standards
 - Standard Reference Materials
 - Standard Information Resources (STRBase website)
 - Interlaboratory Studies
- Technology
 - Research programs in SNPs, miniSTRs, Y-STRs, mtDNA, qPCR
 - Assay and software development, expert system review
 Fraining Materials
- Training Materials
 - Review articles and workshops on STRs, CE, validation
 - PowerPoint and pdf files available for download

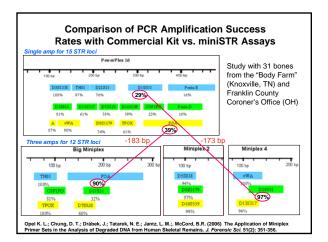

http://www.cstl.nist.gov/biotech/strbase/NIJprojects.htm

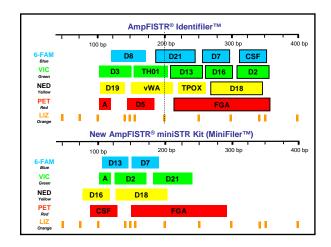
http://www.cstl.nist.gov/biotech/strbase/srm_tab.htm

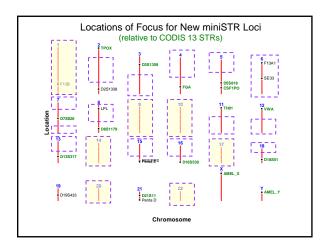
Traceable standards to ensure accurate measurements in our nation's crime laboratories

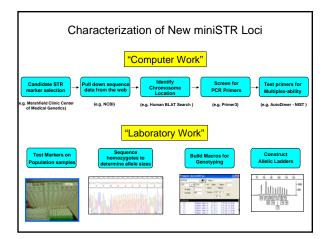


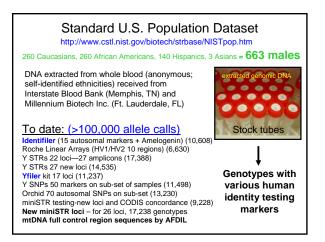

Technology: Research Programs

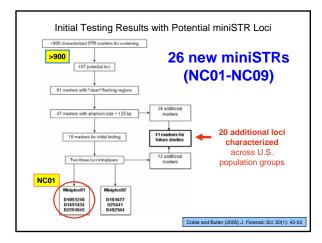

- miniSTRs
- Y-chromosome STRs
- mtDNA
- SNPs
- qPCR for DNA quantitation
- DNA stability studies
- Variant allele characterization and sequencing
- Software tools
- Expert System review
- Assay development with collaborators

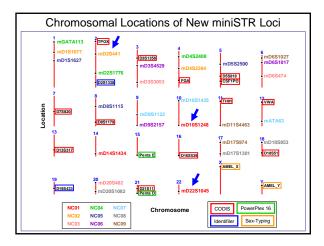


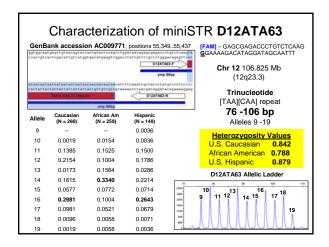

- BodePlexes used in WTC investigation starting 2002
- 2004 Work at NIST with non-CODIS (NC) miniSTRs
- 2006/07 Applied Biosystems to release 9plex MiniFiler http://www.cstl.nist.gov/biotech/strbase/miniSTR/timeline.htm

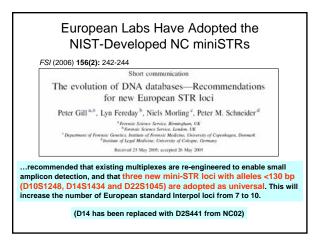




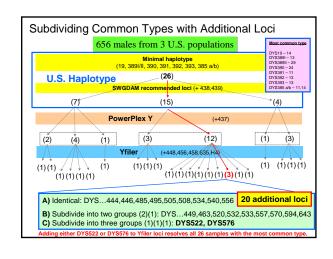


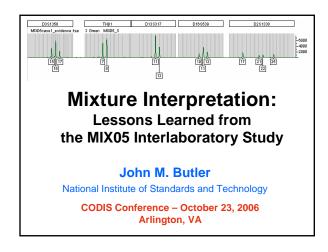


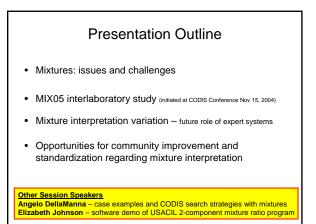




Locus	N	Heterozygosity (Overall)	Rank	African American	Caucasian	Hispanic
D9S2157	661	0.844	1	0.884	0.840	0.779
ATA63 (D12)	659	0.829	2	0.788	0.842	0.879
D10S1248 (NC01)	663	0.792	3	0.825	0.785	0.743
D22S1045 (NC01)	663	0.784	4	0.817	0.785	0.721
D2S441 (NC02)	660	0.774	5	0.798	0.780	0.721
D10S1435	663	0.766	6	0.798	0.770	0.700
D2S1776	654	0.763	7	0.740	0.801	0.734
D3S4529	660	0.761	8	0.752	0.723	0.829
D6S474	648	0.761	9	0.765	0.802	0.679
D5S2500	664	0.747	10	0.757	0.747	0.729
D1S1627	660	0.746	11	0.783	0.737	0.693
D1S1677 (NC02)	660	0.746	12	0.743	0.749	0.743
D6S1017	664	0.740	13	0.807	0.698	0.693
D3S3053	648	0.739	14	0.713	0.724	0.814
D9S1122	659	0.734	15	0.753	0.742	0.686
D17S974	664	0.732	16	0.757	0.702	0.743
D11S4463	664	0.730	17	0.780	0.676	0.743
D4S2408	654	0.722	18	0.752	0.709	0.691
D18S853	664	0.711	19	0.772	0.645	0.721
D20S1082	664	0.696	20	0.792	0.653	0.600
D14S1434 (NC01)	663	0.696	21	0.685	0.721	0.650
D20S482	648	0.691	22	0.673	0.689	0.729
GATA113 (D1)	654	0.668	23	0.673	0.632	0.727
D8S1115	664	0.663	24	0.629	0.660	0.729
D17S1301	664	0.649	25	0.626	0.717	0.564
D4S2364 (NC02)	660	0.511	26	0.385	0.551	0.664

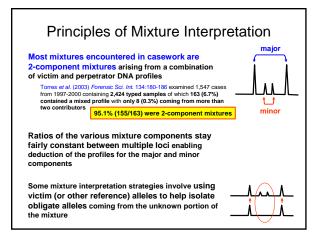


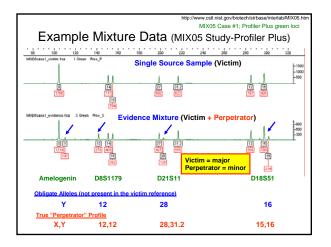


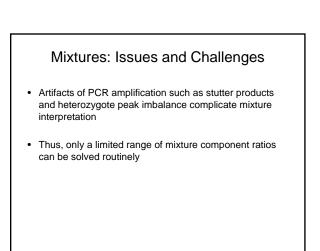

John Margaret Pete Amy Butler Kline Vallone Decker

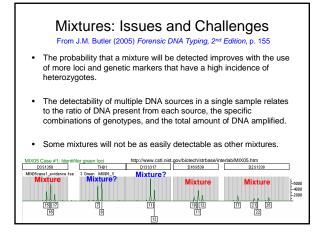
- Standardize information resources on Y-STRs and nomenclature for alleles
- Understand variation in U.S. populations so the best loci can be selected for commercial kits
- · Construct multiplex assays to quickly evaluate loci
- Provide reference material for laboratory calibration (SRM 2395)

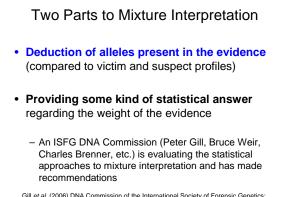
http://www.cstl.nist.gov/biotech/strbase/y_strs.htm








Mixtures: Issues and Challenges From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 154 Mixtures arise when two or more individuals contribute to the sample being tested. Mixtures can be challenging to detect and interpret without extensive experience and careful training. Even more challenging with poor quality data when degraded DNA is present... Differential extraction can help distinguish male


 Differential extraction can help distinguish male and female components of many sexual assault mixtures.
 Y-chromosome markers can help here in some cases...

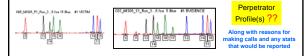
Gill et al. (2006) DNA	Commission of th	e Internation	al Society	of Fore	nsic	Genetics
Recommendations or	the interpretation	of mixtures.	Forensic \$	Sci. Int.	160:	90-101

A High Degree of Variability Currently Exists
with Mixture Interpretation

- "If you show 10 colleagues a mixture, you will probably end up with 10 different answers"
 – Peter Gill, Human Identification E-Symposium, April 14, 2005
- Interlaboratory studies help to better understand why variability may exist between laboratories
- Most analysts are only concerned about their own lab protocols and do not get an opportunity to see the big picture from the entire community that can be provided by a well-run interlaboratory study

NIST Initia	ited In	terlaboratory Studies
Studies involving STRs	# Labs	Publications
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. J. Forensic Sci. 42: 897-906
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JM, Newall PJ, Reeder DJ. (2001) NIST Mixed Stain Studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. J. <i>Forensis Sci.</i> 46: 1199-1210
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quanititation accuracy and its influence on short tandem repeat multiplex signal intensity. Anal. Chem. 75: 2463-2469. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study #3: signal intensity balance in commercial short tandem repeat multiplexes, Anal. Chem. 76: 6928-6934.
DNA Quantitation Study (Jan-Mar 2004) QS04	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, <i>J. Forensic Sci.</i> 50(3):571-578
Mixture Interpretation Study (Jan - Aug 2005) MIX05	69	Data analysis currently on-going Poster at 2005 Promega meeting (Sept 2005); available on STRBase

Overall Lessons Learned from NIST MSS 1,2,&3


- Laboratories have instruments with different sensitivities
- Different levels of experience and training plays a part in effective mixture interpretation
- Amount of input DNA makes a difference in the ability to detect the minor component (labs that put in "too much" DNA actually detected minor components more frequently)

Purpose of MIX05 Study

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- One of the primary benefits we hope to gain from this study is recommendations for a more uniform approach to mixture interpretation and training tools to help educate the community

Mixture Interpretation Interlab Study (MIX05)

- Only involves interpretation of data to remove instrument detection variability and quantitation accuracy issues
- 94 labs enrolled for participation
- 69 labs have returned results (17 from outside U.S.)
 Four mock cases supplied with "victim" and "evidence" electropherograms (GeneScan .fsa files – that can be converted for Mac or GeneMapper; gel files made available to FMBIO labs)
- Data available with Profiler Plus, COfiler, SGM Plus, PowerPlex 16, Identifiler, PowerPlex 16 BIO (FMBIO) kits
- Summary of results will involve training materials to illustrate various approaches to solving mixtures

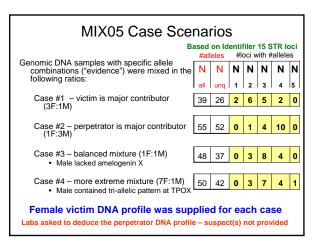
MIX05 Study Design and Purpose Interlab studies provide a "big picture" view of the community

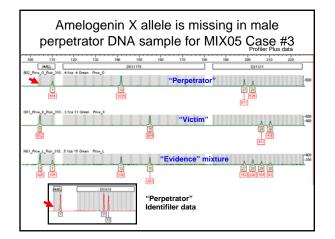
- Permit a large number of forensic practioners to evaluate the same mixture data
- Provide multiple cases representing a range of mixture scenarios
- Generate data from multiple STR kits on the same mixture samples to compare performance for detecting minor components
- The primary variable should be the laboratory's interpretation guidelines rather than the DNA extraction, PCR amplification, and STR typing instrument sensitivity
- Are there best practices in the field that can be advocated to others?

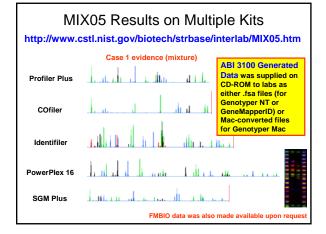
Requests for Participants in MIX05

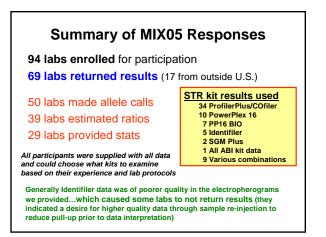
Mixtures representing four different case scenarios have been generated at NIST with multiple STR kits and provided to laboratories as electropherograms.

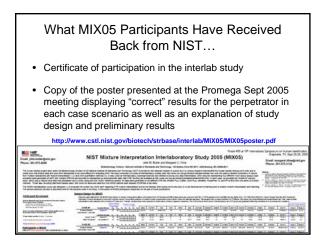
We would like to receive the following information:

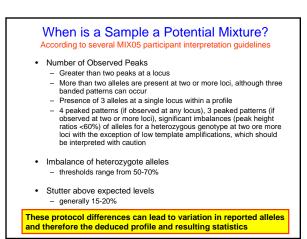

- 1) Report the results as though they were from a real case including whether a statistical value would be attached to the results. Please summarize the perpetrator(s) alleles in each "case" as they might be presented in court—along with an appropriate statistic (if warranted by your laboratory standard operating procedure) and the source of the allele frequencies used to make the calculation. Please indicate which kit(s) were used to solve each case.
- 2) Estimate the ratio for samples present in the evidence mixture and how this estimate was determined.
- Provide a copy of your laboratory mixture interpretation guidelines and a brief explanation as to why conclusions were reached in each scenario

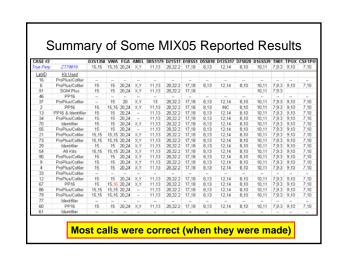

A MIX05 Participant Noted...


"Things we do not do:


- Calculate mixture ratios for casework
 Calculation used for this study: Find loci with 4 alleles (2 sets of sister alleles). Make sure sister alleles fall within 70%, then take the ratio of one allele from one sister set to one allele of the second sister set, figure ratios for all combinations and average. Use peak heights to calculate ratios.
- Provide allele calls in reports
- Provide perpetrator(s) alleles or statistics in court without a reference sample to compare to the DNA profile obtained from the evidence. We will try to determine the perpetrator(s) profile for entry into CODIS."


We recognize that some of the information requested in this interlab study may not be part of a lab's standard operating procedure





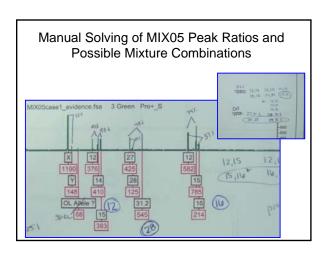
Г

	LabID	Case1 (F:M)	Case2 (M:F)	Case3 (M:F)	Case4 (F:M)
Many labs do	13	2	5	<2	10
not routinely	34	1.83.6	3.96.7	1.61.8	6.27.6
report the	70				
estimated	55	68%:32%	85%:15%	64%:36%	
	21				
ratio of	73	2:1	6:1	2:1	not determined
mixture	29				
components	54	2:1	6:1	2:1	6:1
	90	male23-39%	not determined	male64-71%	
	9	3 or 4:1	4 or 5:1	1.4:1	~10:1
	4	10:1	6:1	1:1	not determined
	33	male60-78%	male80-90%	male58-71%	victim86%
	12	male25%	male85%	male40-45%	unknown10%
	67	1:2.3	6.4:1	2:1	1:6.8
	86	2:1	6-6.5:1	1.6-2:1	4-4.5:1
	79	~3:1 to ~2:1	~6:1 to ~4:1	~2:1*	a lot of victim
	77				
	60	2:1	5:1	2:1	10:1
	61				

	•		for MIX05 Ca						
	Many of the 29 I	abs providing st	atistics used PopSta	ats 5.7					
			Case1						
LabID	Kits Used	Caucasians	African Americans	Hispanics					
77	Identifiler	PE calculated	PE calculated	PE calculated					
73	ProPlus/Cofiler	none provided	none provided	none provided					
4	ProPlus/Cofiler	none provided	none provided	none provided					
12	ProPlus/Cofiler	none provided	none provided	none provided					
29	Identifiler	none provided	none provided	none provided					
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15					
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10					
46	PP16	5.60E+09	3.80E+11	none provided					
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09					
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000					
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08					
61	Identifiler	1.50E+06	260,000	2.40E+07					
79	ProPlus/Cofiler	930,000	47,900	1,350,000					
16	ProPlus/Cofiler	434,600	31,710	399,100					

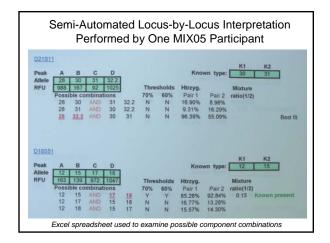
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	1.14E+07	1.97E+07	1.54E+08
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100
b	ased on which a	alleles were at these la	lifference (10 ⁵ to e deduced and re abs are interpr ctropherogran	eported

	Questions for Consideration	
•	Do you look at the evidence data first without considering the suspect's profile?	

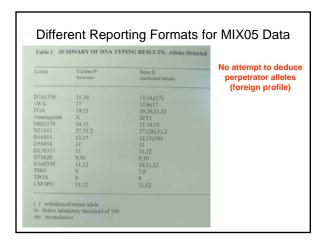

Without a suspect, does your lab proceed with mixture ٠ interpretation?

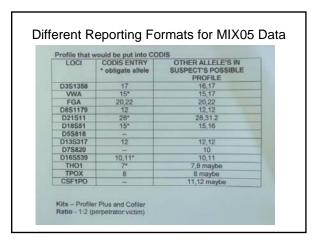
- ٠ Do you have a decision point whereby you consider a mixture too complicated and do not try to solve it? If so, is the case declared inconclusive?
- What kind of training materials would benefit your lab in ٠ improving consistency in mixture interpretation?

Examples of MIX05 Report Formats

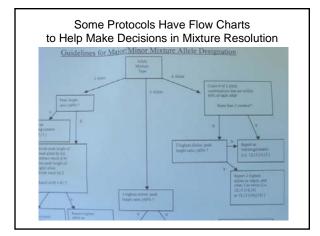

All examples with Case #1

(~3:1 mixture with female victim as the major component - and victim profile is provided)




Locus	Allele	Peak height	Possible Component profiles giving rise to observed mixture		Comments
~	12	563	止	12,12	553/ A12-344 # 10% =*
De	15	244		12,15	12-15 and delenad; has so also, sounder It entitles
Dat	27 21 27 30	237 267 155' 144	z7,23	23,24	J mendering only 2 tenderholes (<u>351+127</u>) <u>151+1277</u> <u>151+1277</u> <u>151+1277+157</u> ph labora 7 ~
	12	213	14	a, 14	of 12.14, g ph belance as that
Do	.14	33)		14.14	y 10.14, 2 - mgm
	17	469		(4,17	19(1) 17 . 2019 2.7 + 142 - 449 - 142 + 322 323/33) + 117 Julian - <u>522-333</u> - 373/33) + 117 Julian - <u>522-333</u> -
	10	387	ii .	10,55	I bourgepers, 7 mpt

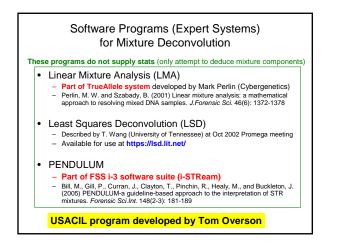
D851179	53 14	1081	HALFACT - 152.824	284			-	
D21511 D21511 D21511	28 30 31	972 164 85]	mines	253	the		314/100 = 0	
D21511	32.2	1010	COMPLEX.	***	deler .	,2230	299/2240:0	0.1182
D18551 D18551 D18561 D18561	12 15 17 18	162 138 864 1033	w)vr.~	300	to back a	2297	34/201 = 1	3.1306
D55818 D55818 D55818 D55818	8 11 12 13	1060 140 232 843		372 325 7.15	10 40 - 493	12028	nis/une (5.1306
D135317 D135317 D135317 D135317	8 9 12 14	129 141 905 817	BUYUF *	270	folul .	1992	3-70/,46z-1	2,1039
075820 075820 075820 075820	8 9 10 11	687 155 600 68	st. (19 -	253 24 229	1062- 6878688720	1018	229/55L * (2.1011
0351358	15 18	1543	5.4 H.Q.+	248	40 1-2	1667	3.44/467= 0	1.1488
0165539 D185539 D165539 D165539	9 10 11 12	202 1420 1337 215	97° q(10) 0	191 71 404	45 ML 1 Rod # 1337 #	s 5181 497 s	And / 500 1	0.1270
TH01 TH01	7	709 87	\$51.0×***	168	the	1557	41/1507 = 4	1.1079

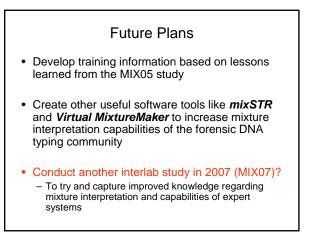

	NUST	MIXE	6 Case 1.	Donast in	(BARRIER	and they						
Late	Victim	*	Perpet- rator	4	Canfi- denae	4/4	Average Ratio		The sale Field 2			
CIBINOR .	15	374	111	210	- 14 - 14	3.74	3.65 1	0.10	8427			
19401	8	2.74	7	9	84	2.24	274 1	RIA .	_			
CU-Det	8	274	7	1 0.2	H	2.80	-	-	-			
CHARGE	HII D	142	15	6.9	-	204	202-1		1001			
in control of	15	334	10	1		3.54	327:1	0.08	8004			
Peral	12				-	224	1391.1		#18			
000818	11	NA	11	NA	H	NA	FDA	756	41			
0136217	71	2.07	12		H	2.07	207.1	NA.	-			
030630	- 0	.+	40	0.44	-84	2.27	2.27:1	144	-			
DHIMM	10	224	10	0.44	81	2.24	1.1	1000				
C2F 190	10	2.02	11	1 100	81	212	2.58:1	8.06	8.005			
	12	1	12	1		.544	NA	.944.	-			
Partal	9	231	210	1.57	11	2.55 2.35 2.56 2.56	213.1	4 13				
AWA	17	177	15	1	**	177	177.1	764	120			
DAD4108	14 15	1.17	12	05		234	2.24 1	0.10	0.045			
TPOX	0	140	0	PLA	24	NA	-	144	1.1			
Amatopenin	8 X	1.30	8 X	1	14 01	1.30	130-1	NA.	-			
GA	X	130	Y 20	1	11	304	1.30 [1	1000				

	Hems						
Locus	"S" Case 1 Evid.	"P" Case 1 Victim					
D3S1358	15, 16, *	15, 16					
D16S539	(10), 11, (12)	11, 12					
AMEL	X, *	X					
THO1	(7), 8	8					
TPOX	8	8					
CSF1PO	11, 12	11, 12					
D75820	9, 10	9, 10					
VWA	(15), 17	17					
FGA	19, 20, 21, 22	19, 21					
D8S1179	12, 14, 15	14, 15					
D21S11	27, 31.2,*	27, 31.2					
D18S51	12, 15, (16)	12, 15,					
D5S818	11	11					
D138317	11, 12	11					

description Pro+/CO S:	D351358	VWA 15 17	FGA 19(20)	AMEL X.X	D8S1179 12/14/15	D21511 27,31.2		D55818	D135317	075820 910	D165539	TH01 7 8	TPOX 8.8	CSFIP 11.12
evid 1	(17)		21/22	(1)		(28)	(16)				112			
Pro+/CO_P: victim 1 reference	15,16	17,17	19,21	X,X	14,15	27,31.2	12,15	11,11	11,11	9,10	11,12	8,8	8,8	11,12
Male interpreted from evidence 1	17	15,15 15,17	20,22	X,Y	12,12	28	16	11,11	12,12	Nd	10,11	7,7 7,8	Nd	Nd
	Two silies values separated by a comma represent a gascrayse. Creating earlies anime buildic doors with no mill alleles. () indicates must adde dotextd. Single manders and manhees separated by -7 represent an allele only designation and the man gascrayse. Market a sample gascrayse could not be considerable with the dote of the location of mostly.													

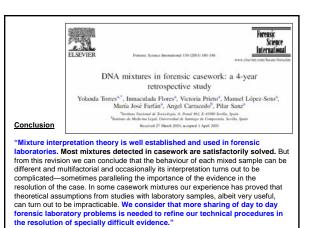
Some Labs Do Not Attempt Mixture Interpretation

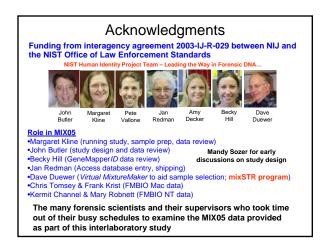

- A number of laboratories chose not to report anything in the MIX05 study citing that without a suspect, mixtures are not examined.
- Why does a National DNA Database such as CODIS exist and how can it be helpful and reach its full potential if casework mixtures are not examined and perpetrator alleles deduced (where possible)?

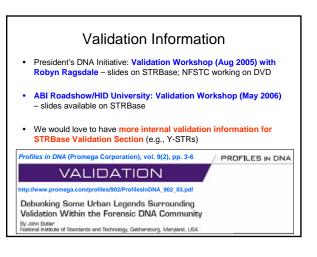

Value of the MIX05 Study http://www.cstl.nist.gov/biotech/strbase/interlab/MIX05.htm

- Data sets exist with multiple mixture scenarios and a variety of STR kits that can be used for training purposes
- A wide variety of approaches to mixture interpretation have been applied on the same data sets evaluated as part of a single study
- Interpretation guidelines from many laboratories are being compared to one another for the first time in an effort to determine challenges facing future efforts to develop "expert systems" for automated mixture interpretation
- We are exploring the challenges of supplying a common data set to a number of forensic laboratories (e.g., if a standard reference data set was ever desired for evaluating expert systems)

Conclusions (Opportunities for Improvement)


- It is worth taking a closer look at protocol differences between labs to see the impact on recovering information from mixture data
- Expert systems (when they become available and are used) should help aid consistency in evaluating mixtures and help produce more uniform reporting formats



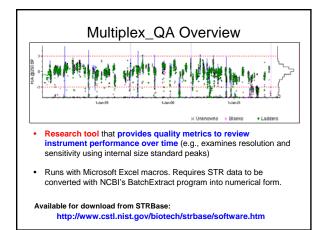


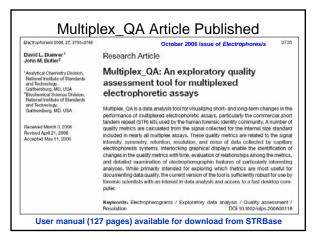
Some Final Thoughts...

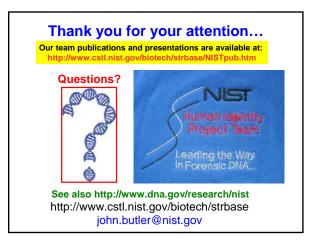
- It is of the highest importance in the art of detection to be able to recognize out of a number of facts, which are incidental and which vital. Otherwise your energy and attention must be dissipated instead of being concentrated (Sherlock Holmes, *The Reigate Puzzle*).
- "Don't do mixture interpretation unless you have to" (Peter Gill, Forensic Science Service, 1998).
- Mixture interpretation consumes a large part of DNA analysts' time – software tools that improve consistency in analysis will speed casework reporting and hopefully cases solved

Urban Legends of Validation... Butler, J.M. (2006) Profiles in DNA vol. 9(2), pp. 3-6

- #1: HUNDREDS OR THOUSANDS OF SAMPLES ARE REQUIRED TO FULLY VALIDATE AN INSTRUMENT OR METHOD
- #2: VALIDATION IS UNIFORMLY PERFORMED THROUGHOUT THE COMMUNITY
- #3: EACH COMPONENT OF A DNA TEST OR PROCESS MUST BE VALIDATED SEPARATELY
- #4: VALIDATION SHOULD SEEK TO UNDERSTAND EVERYTHING THAT COULD POTENTIALLY GO WRONG WITH AN INSTRUMENT OR TECHNIQUE
- #5: LEARNING THE TECHNIQUE AND TRAINING OTHER ANALYSTS ARE PART OF VALIDATION
- #6: VALIDATION IS BORING AND SHOULD BE PERFORMED BY SUMMER INTERNS SINCE IT IS BENEATH THE DIGNITY OF A QUALIFIED ANALYST
- **#7: DOCUMENTING VALIDATION IS DIFFICULT AND SHOULD BE EXTENSIVE**
- #8: ONCE A VALIDATION STUDY IS COMPLETED YOU NEVER HAVE TO REVISIT IT


For example, RFU threshold values...


 Should thresholds be lowered below 150 RFU if instrument noise has been reduced in newer instruments?



Software Tools from NIST

- AutoDimer multiplex PCR primer screening tool
- mixSTR mixture component resolution tool
- Multiplex_QA quality assessment tool for monitoring instrument performance over time
- Tools to aid Expert System data review - DNA_FSSi3_Convert.xls (converts data format)
 - STR_MatchSamples.xls (compares samples)
 - http://www.cstl.nist.gov/biotech/strbase/software.htm

