

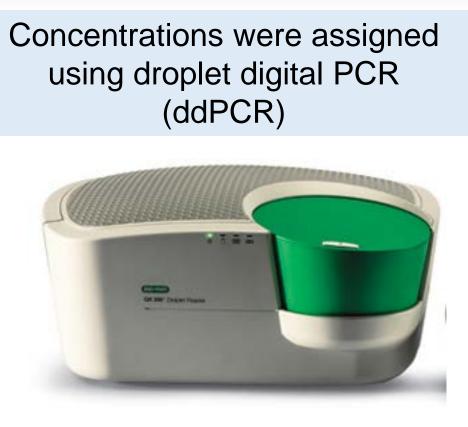
NIST PCR-Based DNA Profiling Standard (SRM 2391d): What is New and Different? Carolyn R. (Becky) Steffen, Erica L. Romsos, Kevin M. Kiesler, Lisa A. Borsuk, Sarah Riman, Katherine B. Gettings, Hariharan K. Iyer, and Peter M. Vallone

Email: becky.steffen@nist.gov

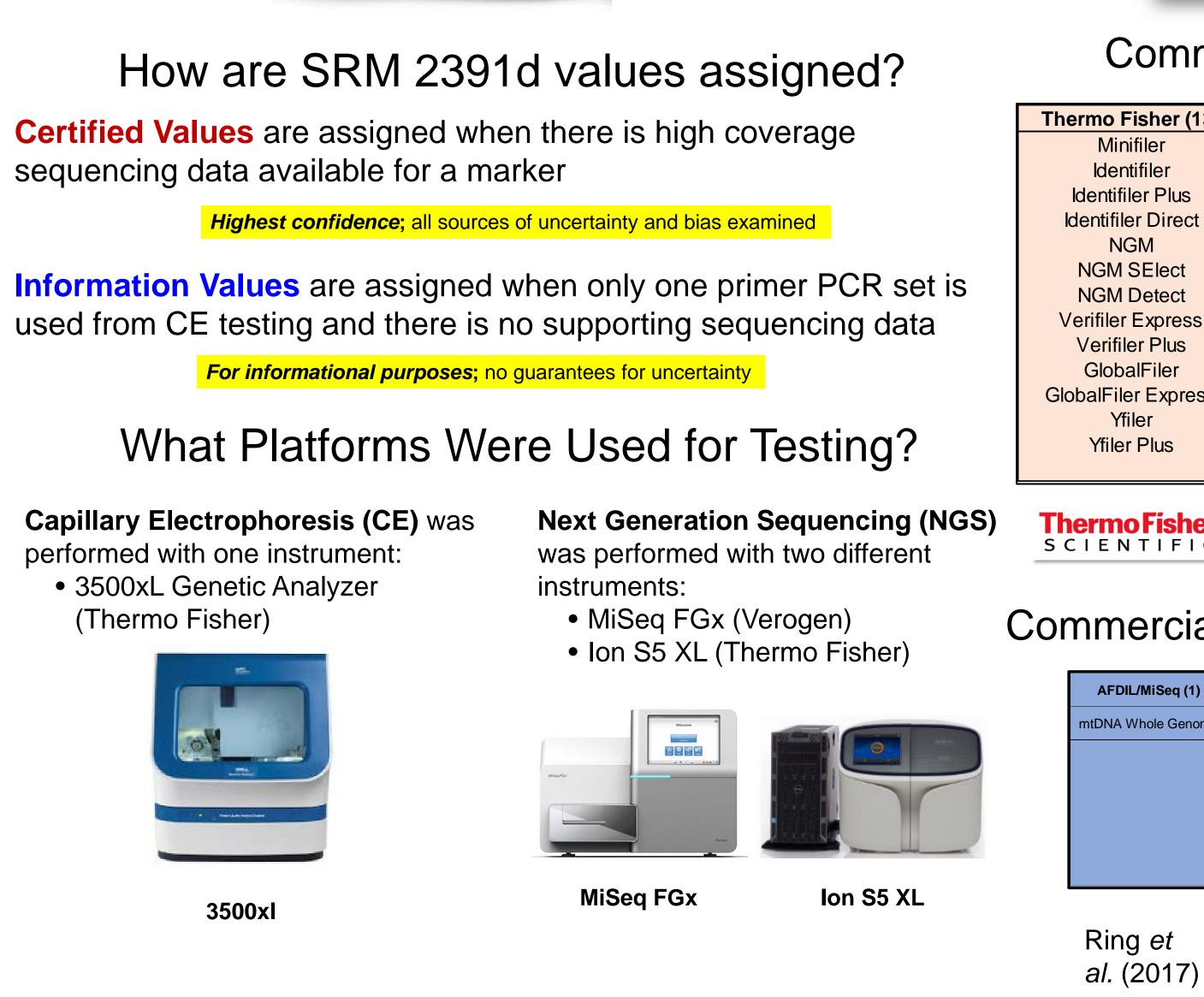
The fifth installment of the NIST Standard Reference Material (SRM) 2391 series was recently released as SRM 2391d: PCR-based DNA standard yet and varies from the previous versions in many ways. These differences include unique samples and profiles and profiles in the previous versions in many ways. for four of the five components, as well as providing more information to the end-user. The DNA forensic community has progressed greatly in the 24 years since the first release of SRM 2391 in 1995, which was certified initially for variable number tandem repeat (STR) markers. The subsequent two iterations, 2391a and 2391b, were certificate of Analysis (COA). These included Y-STR markers, but it wasn't until SRM 2391c was released in 2011 and later updated in 2015 and 2018 [1] that other forensically-relevant markers, and utosomal STR single nucleotide polymorphism (SNP) markers. The goal when developing SRM 2391d was to provide a highly characterized set of genomic DNA markers at the time of certification. This includes of all the markers previously covered in the updated version of SRM 2391c as well as whole mitochondrial genome DNA (mtDNA) sequences, insertion/null allele (INNUL) markers, and Y-SNP markers. High confidence allele calls were established by using multiple polymerase chain reaction (PCR) length-based STR typing kits and technologies. The range of certified and information values that are associated with this SRM, how these values were assigned [2], as well as the various methods used to obtain these values including capillary electrophoresis (CE) and next generation sequencing (NGS) is presented. An additional feature of SRM 2391d is that concentrations were determined by droplet digital PCR (ddPCR) and are listed with an expanded uncertainty. There are several interesting and unique characteristics and nomenclature discussed. SRM 2391d enables the standardization of the typing process for STR and other sequence-based markers for human identity testing. Other important uses such as quality control, traceability and validation of new technologies in the forensic community are highlighted.

Materials (Five Components)

Components A-D are genomic DNA extracted from purchased blood


- Not from cell lines (challenges in obtaining permission from Coriell/NIGMS)
- *May* be more commutable (similar to casework)
- Different samples from 2391c Components A-D have different profiles from SRM 2391c Component E has the same profile as SRM 2391c

Component E consists of cells spotted onto FTA paper


- Two 6 mm punches; approximately 75,000 cells per punch
- Toward the end of SRM 2391c profile degradation was observed for cells
- stored on 903 paper (cells on 903 paper not included in SRM 2391d)
- Same cell line as used in 2391c (CRL-1486)

Concentration ^(a)	Volume	Description	Component
$1.6\pm0.5~ng/\mu L$	55 µL	Anonymous single-source female genomic DNA in TE ⁻⁴ buffer	А
$1.7\pm0.5~ng/\mu L$	55 μL	Anonymous single-source male genomic DNA in TE ⁻⁴ buffer	В
$1.6\pm0.2~ng/\mu L$	55 μL	Anonymous single-source male genomic DNA in TE ⁻⁴ buffer	С
$1.5\pm0.4~ng/\mu L$	55 µL	Mixed-source, 3:1 (3 parts Component A and 1 part Component C) genomic DNA in TE ⁻⁴ buffer	D
7.5×10^4 cells per punch	Two 6 mm punches	Anonymous single-source female cells spotted on FTA paper ^(b)	E

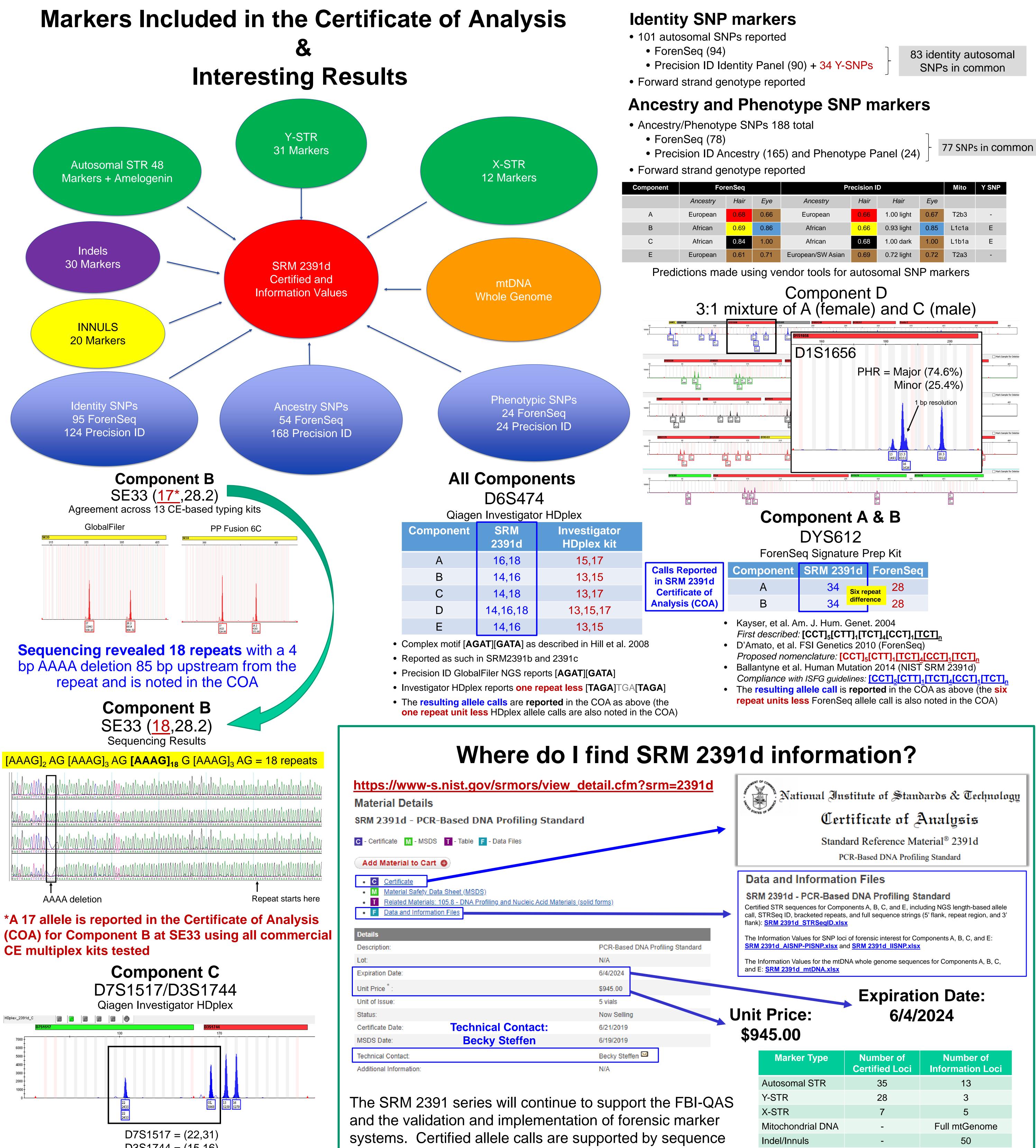
(b) FTA paper cards contain chemicals that lyse cells, denature proteins and protect nucleic acids from nucleases, oxidation and UV damage. FTA cards rapidly inactivate organisms, including blood-borne pathogens, and prevent the growth of bacteria and other microorganisms.

Becky Steffen Erica Romsos Katherine Gettings Kevin Kiesler Lisa Borsuk Sarah Riman

[1] SRM 2391d: PCR-Based DNA Profiling Standard Certificate of Analysis (2019). Available online at https://www-s.nist.gov/srmors/certificates/2391d.pdf. Accessed September 16, 2019. [2] Thompson, A.; Taylor, B.N.; Guide for the Use of the International System of Units (SI); NIST Special Publication 811; U.S. Government Printing Office: Washington, DC (2008); available a Accessed September 17, 2019. **Disclaimer**: Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Commerce. Certain commercial equipment, instruments, and materials are identified in order to specify experimental tely as possible. In no case does such identification imply a recommendation or endorsement by NIST, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose. This work was approved by the NIST Human Subjects Protection Office.

Funding: NIST Special Programs Office: Forensic DNA Acknowledgements: We would like to thank Alex Tona for growing the cells that comprise Component E, as well as the Interlaboratory participants: Promega Corporation (Madison, WI), Qiagen (Germantown, MD), Verogen (San Diego, CA), and the Armed Forces DNA Identification Laboratory (AFDIL, Dover, DE).

National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899-8314



Applied Genetics SRM 2391d Team

Commercial CE Kits tested (34 Kits Total)

isher (13)	Prom	Promega (14)		Qiagen (6)	InnoGenomics (1					
ifiler	Powe	PowerPlex S5		igator ESSplex SE Pl	us InnoTyper	21				
tifiler	Power	PowerPlex CS7		nvestigator HDplex						
er Plus	Powe	PowerPlex 16		vestigator 24plex QS						
er Direct	PowerPlex 16 HS		Inv	estigator 24plex GO!						
SM	Power	PowerPlex 18D		restigator Argus X-12						
SElect	Powe	PowerPlex 21		nvestigator DIPplex						
Detect	PowerP	lex ESX 17								
Express	PowerPlex	ESX 17 Fast								
er Plus	PowerPle	x ESI 17 Pro								
alFiler	PowerPlex ESI 17 Fast									
er Express	PowerPlex Fusion									
ler	PowerPle	PowerPlex Fusion 6C								
Plus		ersaPlex 27PY								
	Power	rPlex Y23								
Fisher		romega		QIAGEN	Innovation in F	cnomics orensic Genetics				
ercial NGS Kits/Methods tested (11 Kits Total)										
Vhole Genome	ForenSeq Signature	Precision ID GlobalFiler NGS		PowerSeq 46GY (prototype)	QIAseq mtDNA Whole					
	Prep Kit	STR Panel v2			Genome Panel					
		Precision ID Ancestry Panel		PowerSeq CRM Nested System (mtDNA control region)	QIAseq SNP Panel					
		Precision ID Identity	Panel							
		Precision ID Phenotype Panel								
		Precision ID mtDNA Genome Pane								

data and CE-length based measurements.

SNPs

323

D3S1744 = (15, 16)Sanger Sequencing confirmed these results

Poster # 48

Poster available for download from STRBase: https://strbase.nist.gov/NISTpub.htm#Presentations