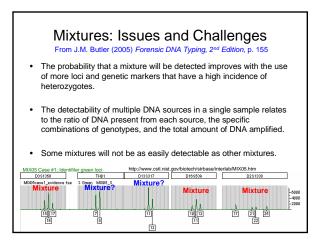
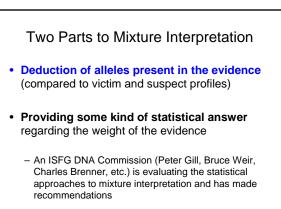


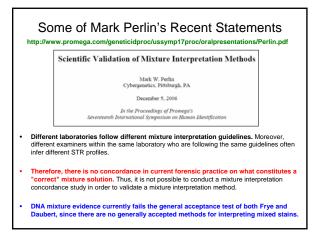
Presentation Outline


- Review highlights from CODIS Oct 2006 mixture talk covering NIST MIX05 interlab study results
- Mixture interpretation protocol and report format variability across the community
- Propose several issues to discuss with a new SWGDAM mixture interpretation subcommittee


CODIS Conference - October 23, 2006 Presentation Outline

- Mixtures: issues and challenges
- MIX05 interlaboratory study (initiated at CODIS Conference Nov 15, 2004)
- Mixture interpretation variation future role of expert systems
- Opportunities for community improvement and standardization regarding mixture interpretation

Other Session Speakers Elizabeth Johnson – software demo of USACIL 2-component mixture ratio program


Angelo Della Manna – case examples and CODIS search strategies with mixtures

Gill et al. (2006) DNA Commission of the International Society of Forensic Genetics: Recommendations on the interpretation of mixtures. Forensic Sci. Int. 160: 90-101

A High Degree of Variability Currently Exists with Mixture Interpretation

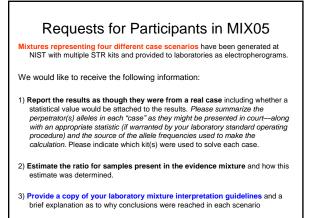
- "If you show 10 colleagues a mixture, you will probably end up with 10 different answers"
 Peter Gill, Human Identification E-Symposium, April 14, 2005
- Interlaboratory studies help to better understand why variability may exist between laboratories
- Most analysts are only concerned about their own lab protocols and do not get an opportunity to see the big picture from the entire community that can be provided by a well-run interlaboratory study

		terlaboratory Studies
Studies involving STRs	# Labs	Publications
Evaluation of CSF1PO, TPOX, and TH01	34	Kline MC, Duewer DL, Newall P, Redman JW, Reeder DJ, Richard M. (1997) Interlaboratory evaluation of STR triplex CTT. J. Forensic Sci. 42: 897-906
Mixed Stain Studies #1 and #2 (Apr–Nov 1997 and Jan–May 1999)	45	Duewer DL, Kline MC, Redman JM, Newall PJ, Reeder DJ, (2001) NIST Mixed Stain Studies #1 and #2: interlaboratory comparison of DNA quantification practice and short tandem repeat multiplex performance with multiple-source samples. J <i>Forensis Sci.</i> 46: 1199-1210
MSS3 Mixed Stain Study #3 (Oct 2000-May 2001)	74	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2003) NIST mixed stain study 3: DNA quantitation accuracy and its influence on short tandem repeat multiplex signal intensity. <i>Anal. Chem.</i> 75: 2463-2499. Duewer, D.L., Kline, M.C., Redman, J.W., Butler, J.M. (2004) NIST Mixed Stain Study 73: signal intensity balance in commercial short tandem repeat multiplexes, <i>Anal. Chem.</i> 76: 6928-6934.
DNA Quantitation Study (Jan-Mar 2004) QS04	80	Kline, M.C., Duewer, D.L., Redman, J.W., Butler, J.M. (2005) Results from the NIST 2004 DNA Quantitation Study, <i>J. Forensic Sci.</i> 50(3):571-578
Mixture Interpretation Study (Jan - Aug 2005) MIX05	<mark>69</mark>	Data analysis currently on-going Poster at 2005 Promega meeting (Sept 2005); available on STRBase

Overall Lessons Learned from NIST MSS 1,2,&3

- Laboratories have instruments with different sensitivities leading to establishment of different thresholds of detection
- Different levels of experience and training plays a part in effective mixture interpretation
- Amount of input DNA makes a difference in the ability to detect the minor component (labs that put in "too much" DNA actually detected minor components more frequently)

Purpose of MIX05 Study

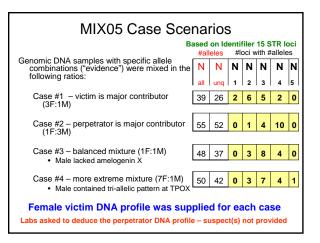

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- One of the primary benefits we hope to gain from this study is recommendations for a more uniform approach to mixture interpretation and training tools to help educate the community

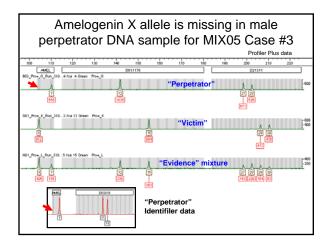
J.M. Butler - SWGDAM Mixture Presentation

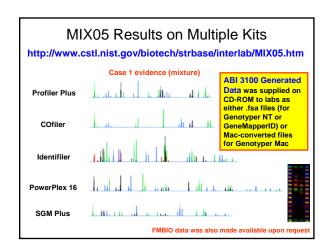
MIX05 Study Design and Purpose

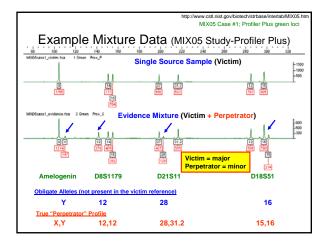
Interlab studies provide a "big picture" view of the community

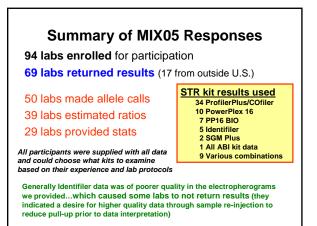
- Permit a large number of forensic practioners to
 evaluate the same mixture data
- Provide multiple cases representing a range of mixture scenarios
- Generate data from multiple STR kits on the same mixture samples to compare performance for detecting minor components
- The primary variable should be the laboratory's interpretation guidelines rather than the DNA extraction, PCR amplification, and STR typing instrument sensitivity
- Are there best practices in the field that can be advocated to others?

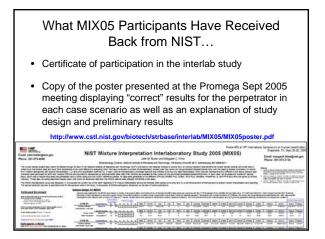


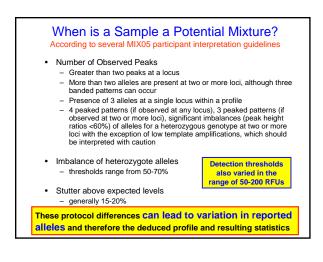

A MIX05 Participant Noted...

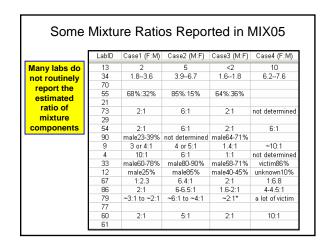

"Things we do not do:

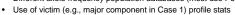

- Calculate mixture ratios for casework

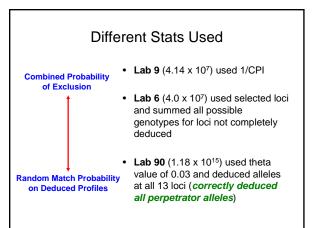

 Calculation used for this study: Find loci with 4 alleles (2 sets of sister alleles). Make sure sister alleles fall within 70%, then take the ratio of one allele from one sister set to one allele of the second sister set, figure ratios for all combinations and average. Use peak heights to calculate ratios.
- Provide allele calls in reports
- Provide perpetrator(s) alleles or statistics in court without a reference sample to compare to the DNA profile obtained from the evidence. We will try to determine the perpetrator(s) profile for entry into CODIS."
- We recognize that some of the information requested in this interlab study may not be part of a lab's standard operating procedure

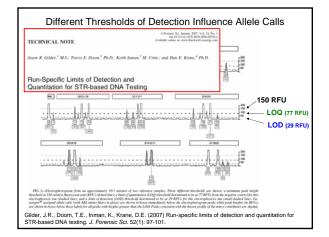


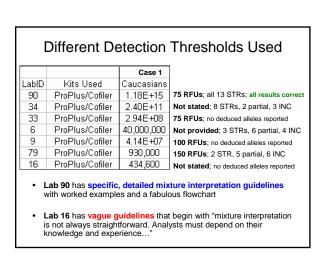




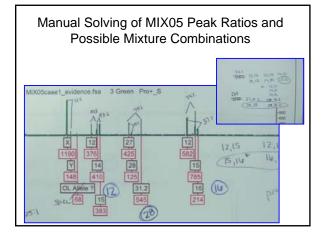

											4	/ -	- 4 4 -		
ASE #2	e #2 has p	D3S1358								D135317					
ASE #2	2779619	15.15		20.24	XY	11.13	28.32.2		8.13	12.14	8.10	10.11	7.9.3		7.10
LabID	Kit Used														
16	ProPlus/Cofiler	-									-				
6	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7,9.3	9.10	7.10
91	SGM Plus	15	15	20,24	XY	11,13	28,32.2	17,18	0,13	12,14	0,10	10,11	7,9.3	5,10	7,10
46	PP16			20,24	-	11,03	10,04.4	17,10				10,11	1,0.0		
37	ProPlus/Cofiler	-	15	20	XY	13	28.32.2	17,18	8,13	12,14	8,10	10.11	7,9.3	9.10	7,10
2	PP16	15	15.15	20.24	XY	11.13	28.32.2	17.18	8.13	INC	8,10	10,11	7.9.3	9.10	7.10
13	PP16 & Identifiler	15	16	20.24	-	11.13	28.32.2	17.18	8.13	12.14	8.10	10,11	7.9.3	9,10	7,10
34	ProPlus/Coffer	15	15	20,24		11,13	28.32.2	17,18	8,13	12,14	8,10	10,11	7.9.3	9,10	7,10
70	Identifiler	15	15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8,10	10.11	7.9.3	9.10	7.10
55	ProPlus/Cofler	15	15	20.24		11,13	28.32.2	17,18	8.13	12,14	8,10	10.11	7,9.3	9.10	7,10
21	ProPlus/Cofiler	15.15		20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
73	ProPlus/Cofiler	15.15	15.15	20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8.10	10,11	7.9.3	9.10	7.10
29	Identifiler	15	15	20,24	XY	11,13	28.32.2	17,18	8,13	12,14	8,10	10,11	7.9.3	9,10	7,10
64	All Kits	15.15		20.24	XY	11.13	28.32.2	17,18	8,13	12.14	8,10	10,11	7.9.3	9.10	7.10
90	ProPlus/Cofiler	15	15	20,24	XY	11,13	28.32.2	17,18	8,13	12,14	8,10	10.11	7,9.3	9,10	7,10
9	ProPlus/Cofiler	15	15	20.24	XY	11,13	28.32.2	17,18	8.13	12.14	8.10	10.11	7.9.3	9,10	7.10
4	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8,13	12.14	8.10	10.11	7.9.3	9.10	7,10
33	ProPlus/Coffer	-					-		-		-		-	-	
12	ProPlus/Coffer	15	15	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
67	PP16	15	15.16	20.24	XY	11.13	28.32.2	17.18	8.13	12.14	8.10	10.11	793	9.10	7,10
86	ProPlus/Coffer	15.15	15.15	20,24		11,13	28.32.2	17,18	8,13	12,14	8,10	10.11	7,9.3	9,10	7,10
79	ProPlus/Cofiler	15.15	15,15			11,13	28.32.2	17.18	8.13	12.14	8.10	10.11	7,9.3	9.10	7.10
77	Identifiler	-		-		-	-		-	-	-		-	-	-
60	PP16	15	15	20.24	XY	11.13	28.32.2	17,18	8.13	12.14	8.10	10.11	7.9.3	9.10	7.10
61	Identifiler						-		-				-	-	

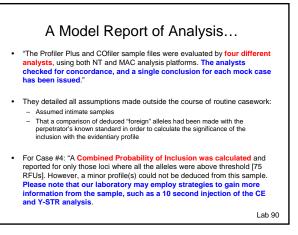


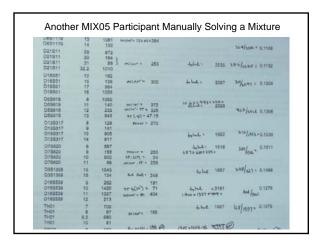

S	ome Repor	ted Stats	for MIX05 Ca	ase #1
	Many of the 29 I	abs providing st	atistics used PopSt	ats 5.7
			Case1	
LabID	Kits Used	Caucasians	African Americans	Hispanics
77	Identifiler	PE calculated	PE calculated	PE calculated
73	ProPlus/Cofiler	none provided	none provided	none provided
4	ProPlus/Cofiler	none provided	none provided	none provided
12	ProPlus/Cofiler	none provided	none provided	none provided
29	ldentifiler	none provided	none provided	none provided
90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
46	PP16	5.60E+09	3.80E+11	none provided
33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	4.14E+07	1.97E+07	1.54E+08
61	Identifiler	1.50E+06	260,000	2.40E+07
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100

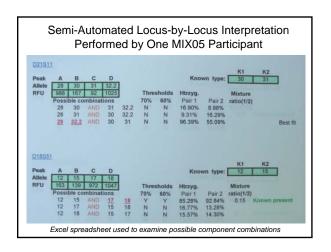

	Which loci ar	e included in	each calculation?	
	Some Differe	nces in F	Reporting Stat	istics
			Case1	
Labl) Kits Used	Caucasians	African Americans	Hispanics
- 90	ProPlus/Cofiler	1.18E+15	2.13E+14	3.09E+15
34	ProPlus/Cofiler	2.40E+11	7.00E+09	9.80E+10
- 33	ProPlus/Cofiler	2.94E+08	1.12E+08	1.74E+09
6	ProPlus/Cofiler	40,000,000	3,500,000	280,000,000
9	ProPlus/Cofiler	4.14E+07	1.97E+07	1.54E+08
79	ProPlus/Cofiler	930,000	47,900	1,350,000
16	ProPlus/Cofiler	434,600	31,710	399,100
		-	difference (10 ⁵ to e deduced and re	
			abs are interpi ctropherogran	0

		Case 1	ASCLD-LAB	Solved loci
LabID	Kits Used	Caucasians	accredited?	listed?
90	ProPlus/Cofiler	1.18E+15	Yes	Yes
34	ProPlus/Cofiler	2.40E+11	Yes	Yes
33	ProPlus/Cofiler	2.94E+08	Yes	No
6	ProPlus/Cofiler	40,000,000	Yes	Yes
9	ProPlus/Cofiler	4.14E+07	No	No (CPE)
79	ProPlus/Cofiler	930,000	Yes	Yes
16	ProPlus/Cofiler	434,600	Yes	No
Possi	ble Reasons for Va	riability in Repo	orted Statistics:	
• Dif	ferent types of calc	ulations (CPE	vs RMP)	

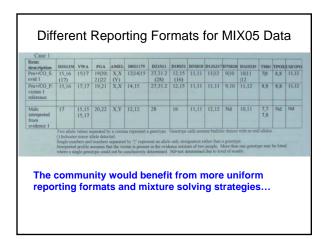


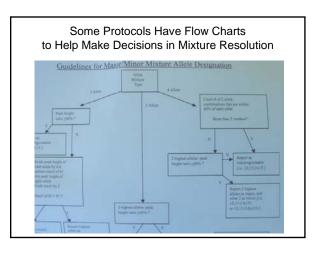



Examples of MIX05 Report Formats


All examples with Case #1 (~3:1 mixture with female victim as the major component – and victim profile is provided)

Locus	Allele	Peak height	Com profiles to of	exible sponent giving rise served xture	Comments
1	12	543	112	12,12	\$3/ /11-34 # 107 ~*
De	15	244		12,15	12-15 mil Johanned) har ar alem smallar F antipation
	27	137	27,22	23,78	of smarkering roly is contributions :
Dat	25	2.87			177 - 127 177 - 127 - 117 - 14 127 - 127 - 127 - 14 127 - 127 - 127 - 14
	30	144			279 287 - 127 ph balance 7 -
	12	213	14	a. i+	of 12.19. & ph belance as not
De	14	171		14.16	J 10,14, 5 - mgm


inc.	ere	nt	Re	ро	rtir	ŋg	For	m	ats	s for MIX05 Data
	NST	MIXE	6 Case 1.	Donat in	C BALLONG	and Prov	-			
	Victor	*	Perpet- rator	4	Confi- denia	4/6	Average Ratis (AR)		Three Febr	1
Dialected	15	374	111	810	H H	3.74		0.10	0.527	
19401	8	274	1	1	66	2.74	274 1	144		
101011	11	1.40	28	1 0.7	H	280		-	-	
STREET.	111	3.19	28	19		204	382.1	opy	1004	
Constant .	15	334	m	1		3.34	327:1	0.08	8.004	
and .	2	121	3			224	100.1	625	11.218	
000818	11	NA	11	NA	H	NA.	TIA .	754	10	
0136317	11	2.07	12		1	2.07	207.1	NA.	-	
070690	9 90	1	40	044	1	227	227.1	144		
DHOUNE	11	2.24	10 10 11	1		2.24	2 18 1	8.06	1.00	
C3F1PO	11	2.12	11	100	H	212	114			
Partall	8	1 221	2.1	1.57		2.10				
		2.0			1	231	1.12.1		400	
AWA	17	177	15	1	**	177	177.1	255	2	
DRIMIN	14	117	12	05		234	2.24 1	0.10	0.045	
TPOX	0	NA	0	NA NA	H	2.56	144	THA.	-	
materia	8	130	8		H			1000	- 24	
And in case of	X	1.30	Ϋ́.	1		1.30	1.30:1	NA.	81	
rGA	19 21	3.04	20 22	123	11	3(A 2.47 2.35 1.91	244.3	0.40	0.104	


Table 1 SUM	ISLART OF DAA I	VPING RESULTS: Alleles Dete	reted
Locus	Victim P Reference	Item S Questioned Sample	No attempt to deduc perpetrator alleles (foreign profile)
D3S1358	15,16	15,16,(17)	
vWA.	17	15.bt.17	
FGA	19,21	19,20,21,22	
Amelogenin	X	X(Y)	
D8S1179	14,15	12,14,15	
D21S11	27,31.2	27,(28),31.2	
D18S51	12,15	12,15,(16)	
D5S818	11	11	
D13S317	11	11,12	
D7S820	9,10	9,10	
D16S359	11,12	10,11,12	
TH01	8	7,8	
TPOX	8	8	
CSFIPO	11,12	11,12	

LOCI	CODIS ENTRY * obligate allele	OTHER ALLELE'S IN SUSPECT'S POSSIBLE PROFILE
D3S1358	17	16,17
VWA	15*	15,17
FGA	20.22	20.22
D8S1179	12	12,12
D21S11	28*	28,31.2
D18S51	15*	15,16
D5S818	-	
D13S317	12	12,12
D7S820		10
D16S539	10,11*	10,11
THO1	7*	7,8 maybe
TPOX	8	8 maybe
CSF1PO	-	11,12 maybe

Different Reporting Formats for MIX05 Data

	and the second se	lems
Locus	"S" Case 1 Evid.	"P" Case 1 Victim
D3S1358	15, 16, *	15, 16
D16S539	(10), 11, (12)	11, 12
AMEL	X, *	X
THO1	(7), 8	8
TPOX	8	8
CSF1PO	11, 12	11. 12
D75820	9, 10	9, 10
WWA	(15), 17	17
FGA	19, 20, 21, 22	19, 21
D8S1179	12, 14, 15	14, 15
D21S11	27, 31.2,*	27, 31.2
D18S51	12, 15, (16)	12, 15,
D5S818	11	11
D13S317	11, 12	11

Some Labs Do Not Attempt Mixture Interpretation

- · A number of laboratories chose not to report anything in the MIX05 study citing that without a suspect, mixtures are not examined.
- Why does a National DNA Database such as CODIS exist and how can it be helpful and reach its full potential if casework mixtures are not examined and perpetrator alleles deduced (where possible)?

Quotes from One Lab's MIX05 Report

- Case 1: STR typing results from the Evidence sample indicate a DNA mixture profile. The victim cannot be excluded as a possible donor of the genetic material in the Evidence sample. No statistics will be generated at this time.
- The Evidence samples would have to be rerun in order to verify any alleles called in the final profiles. This is true for any mixed sample profiles as per our laboratory guidelines.
- Our laboratory does not "pull out" any profile from a mixture for interpretation or statistical purposes. The exception to thi for CODIS profiles where the alleles that can be unambiguously . The exception to this is attributed to the victim are removed.
- We currently do not calculate and report statistics on mixture samples.

I ab 88

The Same Lab's "Mixture Interpretation Grid" The Mixture Interpretation Grid provides an objective summary of how many alleles the two profiles have in common. The results will fall into one of the following categories: "Can not be excluded" -If the majority of alleles from the exemplar specimen are not present and/or a number of alleles foreign to the exemplar specimen are present "Excluded" -If the majority of alleles from the exemplar specimen are not included in the mixture profile " No conclusion can be made" Cases where the mixture profile is limited See laboratory mixture interpretation guidelines for further explanation. All the cases in the study fell into the "can not be excluded" category

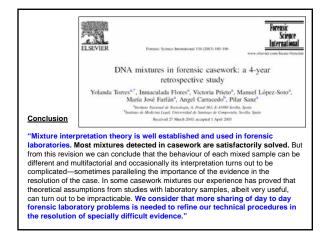
Lab 88

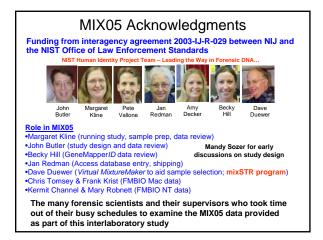
Value of the MIX05 Study http://www.cstl.nist.gov/biotech/strbase/interlab/MIX05.htm Data sets exist with multiple mixture scenarios and a variety of STR kits that can be used for training purposes A wide variety of approaches to mixture interpretation have been applied on the same data sets evaluated as part of a single study Interpretation guidelines from many laboratories are being compared to one another for the first time in an effort to determine challenges facing future efforts to develop "expert systems" for automated mixture interpretation We are exploring the challenges of supplying a common data set to a number of forensic laboratories (e.g., if a standard

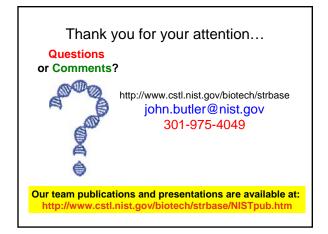
reference data set was ever desired for evaluating expert systems)

Conclusions (Opportunities for Improvement)

- It is worth taking a closer look at protocol differences between labs to see the impact on recovering information from mixture data
- Training should help bring greater consistency
- · Expert systems (when they become available and are used) should help aid consistency in evaluating mixtures and help produce more uniform reporting formats




- Part of FSS i-3 software suite (i-STReam)
- Bill, M., Gill, P., Curran, J., Clayton, T., Pinchin, R., Healy, M., and Buckleton, J. (2005) PENDULUM-a guideline-based approach to the interpretation of STR mixtures. *Forensic Sci.Int.* 148(2-3): 181-189


USACIL program developed by Tom Overson

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

J.M. Butler - SWGDAM Mixture Presentation

