

National Institute of Justice The Research, Development, and Evaluation Agency of the U.S. Department of Justice

Current Areas of NIST Research Effort

- Standard Information Resources (STRBase information, training materials/review articles, validation standardization, calibration datasets)
- Interlaboratory Studies (Real-time PCR, mixture interpretation)
- Resources for "Challenging Samples" (miniSTRs for degraded DNA)
- Information on New Loci (Y-Chromosome, new STRs)

Validation section

- miniSTR section
- Y-chromosome information (multiplexes & databases)

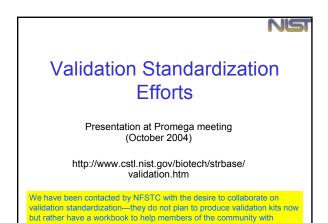
STRBase Updates

(since July 2004)

NIS

 Population data summary & OmniPop program download (courtesy of Brian Burritt)

More minor additions


- Additional commercial STR kit schematics (Yfiler, PowerPlex Y)
- Published Promega primers (added PP16)
- Additional NIST publications/presentations (8 new talks, 9 new papers)

Additional variant alleles & scientist addresses

http://www.cstl.nist.gov/biotech/strbase/

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Review Article on STRs and CE							
Electrophoresis 2004, 25, 1397–1412		Contents					
Review			1397 1397				
John M. Butler ¹ Eric Buel ² Federica Crivellente ^{3*} Bruce R. McCord ²	Forensic DN using the AB for STR anal	2 Sample preparation and injection 3 Sample separation	1400 1401 1402 1403				
¹ National Institute of Standards and Technology, Biotachnology Division, Gaithersburg, MD, USA "Avermont Forensic Laboratory, Waterbury, VT, USA "Onio University, Department of Chemistry, Athens, OH, USA	DNA typing with shor applications includin such as the ABI Prise for many laboratories ing sample preparat results using CE syst ered in the contact throughput and ease	3.2 The buffer. 3.3 The capillary. 4 Sample detection. 5 Sample interpretation 6.1 Software used. 5.2 Assessing resolution of DNA separations. 6 Applications of forensic DNA testing	1403 1404 1405 1406 1406 1406 1407 1407 1408				
		Increasing sample throughput. Capillary array electrophoresis systems. Microchip CE systems. Microchip CE systems. markers.	1408 1408 1408 1409 1410 1410				

validation.

Our Conclusion...

to a certain extent it can...but everyone will always have a different comfort level...and inflexible, absolute numbers for defined studies will not likely be widely accepted

http://www	v.cstl.	nist.gov/b	age on STRBase N iotech/strbase/validation.h	ST tm
🛿 Validation Summ	ary Shee		assie DINA Laboratories	
 We are initiating an effori literature. The purpose o tested, and the number o efforts by forensic DNA I SWGDAM Revised Valii documented and summa Below is listed a compil 	f this effor of samples aboratorie dation Gui arized."	PowerPlex Y Validation Reference: Horne et al. (2000) State Completed Single Source (Concertance) Midure Ratio (mace female)		#Ban 40 112
STR kits, in-house assay full reference bibliograph specific Validation Sur Kit, Assay, or Instrument	v is listed	Mature Radio (male male) Densifiely Non-Human HOT DRM Presision (ABI 3192 and ADI 377) Hon-Probative Cases DAter Peak Inspirit Rate	Alaska 2 MMH moderes series at 1 mode (0.5.15.15.12.15.15.15.15.15.15.15.15.15.15.15.15.15.	132 84 24 8 102 412
PowerPiex Y Profiler Plus	Frank al. (2) Pawle LaFo	Cycling Parameters Annealing Temperature Reaction volume Thermal cyclin test Male specificity TagGott polymerace titration	5 crystes (26/27/2020) o 3 punch scans 2 è enquies Sibilar à Shargmannen (56/58/2020) (3 i sanquie 5 exjunes (56/2020) (2 5 p. 2) (3 enquies) (3 estat a 12 sanques) 1 montes (16/2020) (2007) (3 f. 4 sanques) (2 montes 3 estat a 12 sanques) 2 females 3 transformation scanse of 500 ng Benale CMU (5 enquiets 3 enquies 1 Bhaton scanse of 500 ng Benale CMU (5 enquiets 3 enquies 1 Bhaton scanse of 500 ng Benale CMU (5 enquiets 5 enquies 1 Bhaton scanse of 500 ng Benale CMU (5 enquies 1 Bhaton scanse of 500 ng B	80 25 50 78 10 20
Coffler SOM Plus AmpFISTR Blue AmpFISTR Oreen 1	Cotto Wally Holt c	Prenar par titultor Magnessum titulton Camenanta: Oth	5 smooth 05 MH Thefrit Socie 4 quarters (10 K0 346 33 mg DNg 5 smooth 07 265 551 752 nM Mg x 4 quarters (10 Go 256 31 ng DNg 10 TAL, EARPLES EXAMPLE per information and conclusions	20 26 D 1269

Validation	Summary Sheet for PowerPlex Y	NIST
Study Completed (17 studies done)	Description of Samples Tested (performed in 7 labs and Promega)	# Run
Single Source (Concordance)	5 samples x 8 labs	40
Mixture Ratio (male:female)	6 labs x 2 M/F mixture series x 11 ratios (1:0,1:1,1:10,1:100,1:300,1:1000,0.5:300, 0.25:300,0.125:300, 0.0625:300, 0.03:300 ng M:F)	132
Mixture Ratio (male:male)	6 labs x 2 M/M mixtures series x 11 ratios (1:0, 19:1, 9:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:9, 1:19, 0:1)	132
Sensitivity	7 labs x 2 series x 6 amounts (1/0.5/0.25/0.125/0.06/0.03)	84
Non-Human	24 animals	24
NIST SRM	6 components of SRM 2395	6
Precision (ABI 3100 and ABI 377)	10 ladder replicates + 10 sample replicated + [8 ladders + 8 samples for 377]	36
Non-Probative Cases	65 cases with 102 samples	102
Stutter	412 males used	412
Peak Height Ratio	N/A (except for DYS385 but no studies were noted)	
Cycling Parameters	5 cycles (28/27/26/25/24) x 8 punch sizes x 2 samples	80
Annealing Temperature	5 labs x 5 temperatures (54/58/60/62/64) x 1 sample	25
Reaction volume	5 volumes (50/25/15/12.5/6.25) x [5 amounts + 5 concentrations]	50
Thermal cycler test	4 models (480/2400/9600/9700) x 1 sample + [3 models x 3 sets x 12 samples]	76
Male-specificity	2 females x 1 titration series (0-500 ng female DNA) x 5 amounts each	10
TaqGold polymerase titration	5 amounts (1.38/2.06/2.75/3.44/4.13 U) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Primer pair titration	5 amounts (0.5x/0.75x/1x/1.5x/2x) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Magnesium titration	5 amounts (1/1.25/1.5/1.75/2 mM Mg) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Krenke et al. (2005) Forensio	Sci. Int. 148: 1-14 TOTAL SAMPLES EXAMINED	1269

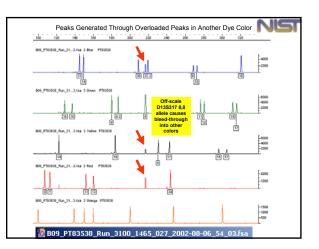
	atory Internal Validation Summarie	ise n	41 ¹⁰ 1
laboratory's validation standard format runna downloadable Excel fa	and a second second second second second second	utformation une-d-using	in in a g this
Kit, Assay or Instr			ature)
PowerPlex 16 Kit w			
Quantifiler with Al	81 7000 Alabama Department of Forensic Sciences Angelo De		
		ila Man	110
Soliciting In	formation on Studies Performed by the Con	_	nity
	formation on Studies Performed by the Cor	nmu	nity reactor to 100
Single Source (Concordance) Mixtures	formation on Studies Performed by the Con concursion and any series and series and a series of the	nmu 208 45	nity 100 10
Story Canonices Single Source (Concordance)	formation on Studies Performed by the Con Descuration of Studies Net Conference of Automation Environment Conference on Conference on Conference (Conference on Conference	nmu 208 45 22	nity 100 10 33
Single Source (Concordance) Mixtures	formation on Studies Performed by the Con concursion and any series and series and a series of the	nmu 208 45 22 55	nity 100 10 33 33
Stone Consucces Single Source (Concordance) Mixtures Mixture Ratio Sensitivity Non-Human	formation on Studies Performed by the Con Description (Computer Content of Content of Content I surgers (House Incodence): 20 and (I subject Content of Content I surgers (House Incodence): 20 and (I subject Content of Content I surgers (House Incodence): 20 and (I subject Content of Content I surgers (House Incodence): 20 and (I subject Content of Content I surgers (House Incodence): 20 and (I subject Content of Content I surgers (House Incodence): 20 and (I subject Content of Content I subject Content of Content of Content of Content of Content I subject Content of	nmu 208 45 22	nity 100 10 33 33 0
Stone Connected Single Source (Concordance) Mutures Mixture Ratio Sensitivity	formation on Studies Performed by the Con- Medium and Antional State St	nmu 208 45 22 55	100 10 33 33 0 12
Stone Consucces Single Source (Concordance) Mixtures Mixture Ratio Sensitivity Non-Human	formation on Studies Performed by the Con Description in Statement of the Statement of the Statement I serves the description of the Statement of the Statement of the Statement I serves the description of the Statement of th	nmu 208 45 22 55 11 12 60	100 10 33 33 0 12 60
Stone Canadices Single Source (Concordance) Mutures Muture Ratio Sensibility Non-Human NIST SRM 2391b	formation on Studies Performed by the Con- templated according to a set of	nmu 208 45 22 55 11 12	100 10 33 33 0 12
Stong Concession Single Source (Concordance) Mistures Misture Ratio Senstewy Non-Human NIST SRM 2391b Precision (ABI 310) Non-Probative Cases Stutte	formation on Studies Performed by the Con- mercure as simple control on a studies of the control of the contro	nmu 208 45 22 55 11 12 60	100 10 33 33 0 12 60
Stony Comparison Single Source (Concordance) Mustures Musture Ratio Sensitivity Non-Human NST SFM 2291b Precision (ABI 310) Non-Phobathe Cases	formation on Studies Performed by the Con Description is Samples for which covers to a submet of the submet I submet if home is account of the submet of position covers to a sub- I submet if home is account of the submet of position covers to a sub- I submet if home is account of the submet is a submet is a submet of the submet of the submet I submet is a submet of the submet is a submet is a submet of the submet	nmu 208 45 22 55 11 12 60 20 20	100 10 33 33 0 12 60
Stong Concession Single Source (Concordance) Mistures Misture Ratio Senstewy Non-Human NIST SRM 2391b Precision (ABI 310) Non-Probative Cases Stutte	formation on Studies Performed by the Con rescuence at a single case with a constraints at a single case with a constraints it was a thread of the single case with a constraints at a single case with a	nmu 208 45 22 55 11 12 60	100 10 33 33 0 12 60
Steve Canonics of Concordance) Minatores Minatores Ratio Sonability Non-Human Non-Human Non-Probative Cases Studie Peak Height Ratio Cycling Parameters	formation on Studies Performed by the Con Description Construction Construction Construction Require (Production Construction Construction Require (Production Construction) Require (Produ	nmu 208 45 22 55 11 12 60 20 20	nity 100 10 33 33 0 12 60 20 -
Shing: Source (Cencordance) Matures Matures Sanabidy Non-Human Non-Human NST SRM 2291b Precision (ABI 310) Non-Probative Cases State Preak Height Ratio Cycling Parameters Anorealing Temperature	formation on Studies Performed by the Con Inscription is simplify that the second state is a second state in it seems if there is a second state is a second state is a second state is it seems if there is a second state is a second state is a second state is a it seems if the second state is a s	200 200 45 22 55 11 12 60 20 - 55	nity 100 10 33 33 0 12 60 20 -
Strong Consustant Single Source (Concordance) Mistores Mistores Ratio Sonalbity Non-Human Nich-Strong (ABI 310) Non-Probative Cases Stutte Peak Height Ratio Cycling Parameters	formation on Studies Performed by the Con Description is Simpler for Min Wind Constraints in Contractions I surgers if the other strategies and the strategies in the other st	ELEME 1 200 45 22 55 11 12 60 20 - 55 56 60	nity 100 10 33 33 0 12 60 20 -
Stings Commission Single Source (Concordance) Mistores Mistore Ratio Sonzbirty Non-Human NST SSM 2391b Precision (ABI 310) Non-Probative Cases Stutie Peak Height Ratio Cycling Parameters Annearg Temperature Précisions?	formation on Studies Performed by the Con Inscription is simplify that the second state is a second state in it seems if there is a second state is a second state is a second state is it seems if there is a second state is a second state is a second state is a it seems if the second state is a s	208 46 22 55 11 12 60 20 - - 56 60 36	nity 100 103 33 0 12 60 20 - - - 12

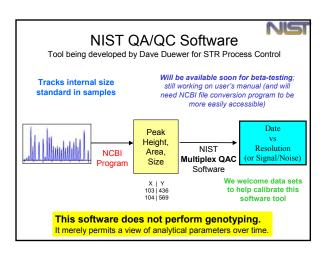
NIS

Goals of this Validation Standardization Project

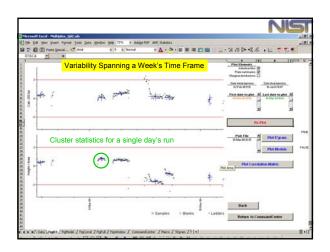
NIS

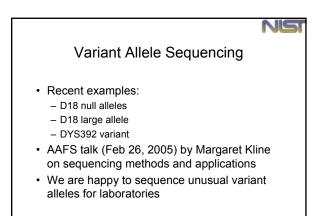
- To help the community gain a better understanding of the validation process and how others have implemented validation in their labs so that validation in one's own lab may be performed more quickly
- To help with establishing uniformity throughout the field to aid auditors in their inspections

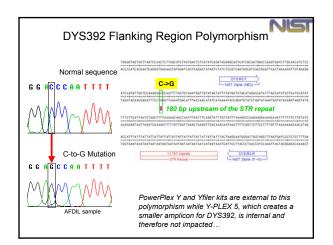

Expert System Calibration Data Set

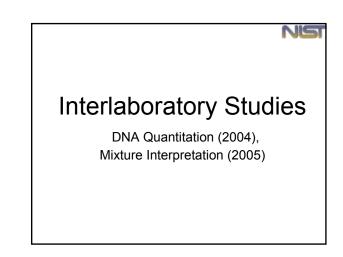

"Electronic SRM" to help meet NDIS Appendix B requirements

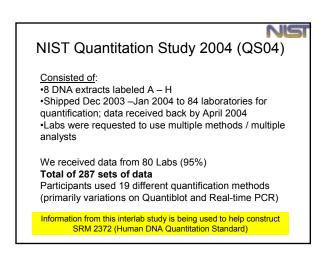

These data will be able to be used to check software upgrades to ensure reliable performance of the Expert System software

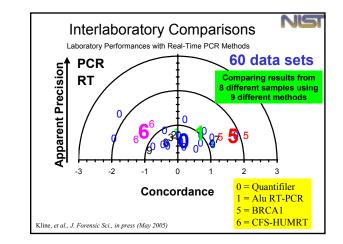

To Help Meet NDIS Appendix B Requirements for Evaluating Expert Systems... • 200 calibration samples needed

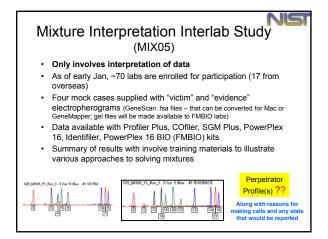

- 200 calibration samples needed
- Types of challenges (at least 5 of each type)
 Off-ladder alleles
 - Off-ladder alleles
 - Tri-allelic patternsNon-template addition
 - Spikes and signal overload (bleed-through into another dye channel)
 - Mixtures
 - Degraded DNA
- We welcome suggestions as to other types of challenges to include in the data set and <u>what annotation format would be most useful</u>
- <u>Samples are currently being gathered</u> with plans to generate data using Profiler Plus/COfiler, Identifiler, PowerPlex 16, and SGM Plus (kits have already been purchased)











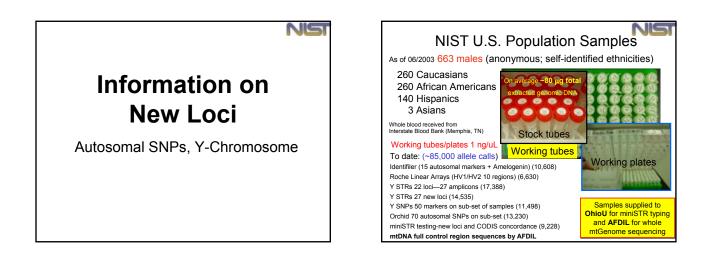
				% ((uantitat	ive Res	ults*		
Target [DN	A] ng/µL	1.5	0.5	0.5	0.16	0.16	0.05	0.05	0.05
Method	Neul	A	в	E	с	F	D	G	н
Quantifiler	37	100	100	100	100	100	100	100	100
Other RT-PCR	23	100	100	100	100	100	100	100	100
"ACES"	14	100	100	100	100	100	100	100	100
AluQuant	13	100	100	100	100	100	100	100	100
PicoGreen	12	100	100	92	100	100	92	83	83
ECL	75	100	99	99	93	95	84	77	87
TMB	98	100	100	99	93	94	59	62	63
Yield gel	14	57	0	0	0	0	0	0	0
	286								

- Goal is to understand the "lay of the land" regarding mixture analysis across the DNA typing community
- Results will be discussed at NIJ DNA Grantees Meeting (June 2005), SWGDAM (July 2005), and ISFG (Sept 2005)
- We plan to develop training materials to aid in mixture interpretation with available software tools and to help in standardizing reports involving mixture analysis

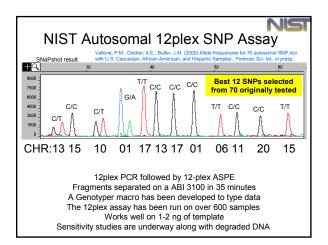
NS

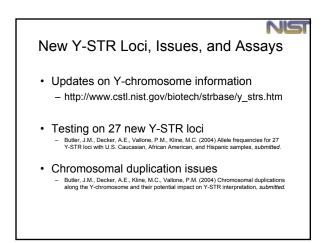
Degraded DNA work

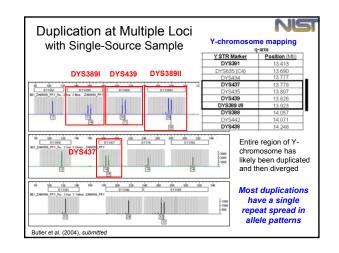
- ENFSI study participation

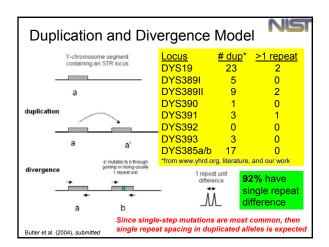

 compared STRs, miniSTRs, and autosomal SNPs on same set of degraded DNA samples provided by Peter Gill
- miniSTR website
- http://www.cstl.nist.gov/biotech/strbase/miniSTR.htm
- New miniSTR loci published

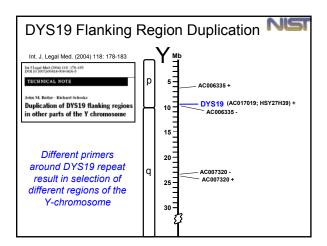
 http://www.cstl.nist.gov/biotech/strbase/pub_pres/Coble2005miniSTR.pdf
- SNP markers and assays


 http://www.cstl.nist.gov/biotech/strbase/SNP.htm
- Performance of miniSTRs on shed hairs
 - Mike Coble will speak at AAFS (Feb 25, 2005)


Recent Publications on miniSTRs


- Butler, J.M., Shen, Y., McCord, B.R. (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J. Forensic Sci 48(5) 1054-1064.
- Chung, D.T., Drabek, J., Opel, K.L., Butler, J.M., McCord, B.R. (2004) A study on the effects of degradation and template concentration on the efficiency of the STR miniplex primer sets. *J. Forensic Sci.* 49(4): 733-740.
- Drabek, J., Chung, D.T., Butler, J.M., McCord, B.R. (2004) Concordance study between miniplex STR assays and a commercial STR typing kit, *J. Forensic Sci.* 49(4): 859-860.
- Coble, M.D. and Butler, J.M. (2005) Characterization of new miniSTR loci to aid analysis of degraded DNA., *J. Forensic Sci., in press.* (January 2005 issue)


http://www.cstl.nist.gov/biotech/strbase/miniSTR.htm http://www.cstl.nist.gov/biotech/strbase/miniSTR/timeline.htm


Standard U.S. Population Dataset NIST http://www.cstl.nist.gov/biotech/strbase/NISTpop.htm 260 Caucasians, 260 African Americans, 140 Hispanics, 3 Asians = 663 males						
Genetic Markers	Loci Examined	Publications				
Common STRs	D2S1338 and D19S433	Butler et al. (2003) JFS				
miniSTRs	information has been provided to	Drabek et al. (2004) JFS				
New autosomal STRs	the FBI for inclusion in PopStats to aid statistical calculations	Coble et al. (2005) JFS				
Autosomal SNP	s 70 C/T SNPs (Orchid panel)	Vallone et al. (2004) FSI				
Common Y-STRs	22 loci (27 regions)	Schoske et al. (2004) FSI				
	Yfiler concordance study	Data in ABI Yfiler database				
New Y-STRs	27 additional loci	Butler et al., submitted				
Y-SNPs	50 loci spanning haplogroups A-R	Vallone et al. (2004) JFS				
mtDNA	LINEAR ARRAY and coding mtSNPs	Kline et al. (2005) JFS				
	Full control regions by AFDIL	inclusion in EMPOP				

Our Recent Y-Chromosome Work pdf files available at http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm Schoske, R., Vallone, P.M., Kline, M.C., Redman, J.W., Butler, J.M. (2004) High-throughput Y-STR typing of U.S. populations with 27 regions of the Y chromosome using two multiplex PCR assays, *Forensic Sci. Int.* 139: 107-121. Vallone, P.M. and Butler, J.M. (2004) Multiplexed assays for evaluation of Y-SNP markers in U.S. populations. *Progress in Forensic Genetics* 10, Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1261, 85-67. Butler, J.M. and Schoske, R. (2004) Forensic value of the multi-copy Y-STR marker DYS464. *Progress In Forensic Genetics* 10, Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1261, 278-280.

- Butler, J.M. and Schoske, R. (2004) Duplication of DYS19 flanking regions in other parts of the Y chromosome. Int. J. Legal Med., 118: 178-183.
- Vallone, P.M. and Butler, J.M. (2004) Y-SNP typing of U.S. African American and Caucasian samples using allele-specific hybridization and primer extension. J. Forensic Sci. 49(4): 723-732.
- Butler, J.M., Decker, A.E., Kline, M.C., Vallone, P.M. (2004) Chromosomal duplications along the Ychromosome and their potential impact on Y-STR interpretation, J. Forensic Sci., submitted.
- Butler, J.M., Decker, A.E., Vallone, P.M., Kline, M.C. (2004) Allele Frequencies for 27 Y-STR Loci with U.S. Caucasian, African American, and Hispanic Samples, *Forensic Sci. Int., submitted.*

