

Email: kristen.oconnor@nist.gov Phone: 301-975-5205

Using DNA testing and statistical calculations, kinship analysis evaluates the strength of proposed familial relationships between individuals. Kinship analysis has a variety of applications: criminal and civil paternity cases, mass disaster victim identifications, and immigration cases. Many software tools are commercially or freely available to aid kinship analysis; however, there is no standard dataset of familial genotypes to help validate calculations made by a software program. Currently, a laboratory must generate pedigrees and genotypes for individuals with known familial relationships. These genotypes are either simulated or taken from previous casework in the laboratory.

The goal of our work is to develop standard reference family data (SRFD) as a tool to aid laboratory validation of kinship analysis software. We are developing an artificial four-generation pedigree as a candidate SRFD based on data collected from six different family groups analyzed with 46 autosomal STRs. The genotypes of the pedigree reflect observed Mendelian inheritance patterns, including mutations and rare alleles, within real families. The pedigree structure allows for kinship testing of pairwise comparisons (parent-offspring, full siblings, half siblings, first cousins, etc.), paternity trios, and motherless paternity. Due to the size of the pedigree, more complex tests (e.g., incest) can be constructed in the future. The SRFD can be used to verify the functionality of calculations performed by kinship analysis programs including the handling of mutations, rare alleles. Illustrations of how the pedigree data can be used are demonstrated with GeneMarker[®] HID v. 1.90, a commercially available program from SoftGenetics, and KIn CALc v. 4.0, an Excel[®]-based freeware program developed at the California Department of Justice. To assist validation for the kinship testing community, the SRFD and pedigree, allele frequency data from major U.S. populations [1-3], and published likelihood ratio formulas will be made available on STRBase (http://www.cstl.nist.gov/strbase/), an online resource for the forensic genetics community [4].

Candidate Reference Family Pedigree

Candidate Reference Family Data: A Tool for Validating Kinship Analysis Software

Kristen L. O'Connor¹, Steven P. Myers², Erica L.R. Butts¹, Carolyn R. Hill¹, John M. Butler¹, and Peter M. Vallone¹

¹ National Institute of Standards and Technology, Biochemical Science Division, Gaithersburg, MD 20899-8312 ² California Department of Justice, Jan Bashinski DNA Laboratory, Richmond, CA 94804

Standard Reference Family Data can be used to verify the functionality of algorithms for kinship analysis. In addition, the SRFD can be used to evaluate the discriminatory power of adding genetic information to a core set of loci. Two software programs, GeneMarker[®] HID v. 1.90 and KIn CALc v. 4.0, were used to demonstrate how the pedigree data can assist validation.

- 1. Determine the parameters to be validated or tested - Number and types of familial relationships
- Loci genotyped
- Allele frequency database
- Mutation formula
- Minimum allele frequency formula
- 2. Identify the relationships to be tested in pedigree

- 6. Troubleshoot any inconsistent results

Example

Identifiler[®] genotypes of individuals from the Candidate Reference Family Data KIn CALc v. 4.0 for analysis

Complex Kinship Analysis

Family reunification example with individuals 3, 19, and 20.

Evaluate probabilities of grandmother-grandchildren kinship vs. unrelated.

LR = Pr(genotypes|3 is the grandmother of 19 and 20) = 5,245Pr(genotypes|3 is unrelated to 19 and 20)

Mutations

Paternity analysis with individuals 10 (alleged father), 11 (mother), and 21 (child). Either a paternal or maternal mutation event occurred at D21S11 to result in allele 30 in the child.

Compare likelihood ratio (LR) values when different mutation algorithms are used.

	LR Values for Different Mutation Algorithms				
	No Mutation Allowed	Mutation Always Allowed and Considered	Mutation Considered Only if Required		
D21S11	0	0.0033	0.0024		
Other 14 loci	760,771	756,069	760,771		
Profile	0	2,471	1,836		

Minimum Allele Frequency for Rare Alleles

Motherless paternity with individuals 7 and 18. Allele 6 at D16S539 is rare in both individuals.

Compare LR values when different algorithms are used.

LR Values for Different Minimum Allele Frequency Algorithms **No Minimum Allowed** D16S539 0/0 Profile 0/0

<u>Copy of poster available</u>: http://www.cstl.nist.gov/biotech/strbase/pub_pres/Promega2010_OConnor.pdf

References [1] Butler, J.M., et al. (2003) Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. J. Forensic Sci. 48(4):908-911.

[2] Hill, C.R., et al. (2008) Characterization of 26 miniSTR loci for improved analysis of degraded DNA samples. J. Forensic Sci. 53(1):73-80.

[3] Hill, C.R., et al. (2010) Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex[®] ESX 17 and ESI 17 Systems. Forensic Sci. Int. Genet. (2010), doi:10.1016/j.fsigen.2010.03.014.

[4] Ruitberg, C.M., Reeder, D.J., Butler, J.M. (2001) STRBase: a short tandem repeat DNA database for the human identity testing community. Nucleic Acids Res. 29: 320-322.

[5] Hill, C.R., Butler, J.M., Vallone, P.M. (2009) A 26plex autosomal STR assay to aid human identity testing. J.

Forensic Sci. 54(5): 1008-1015.

[6] O'Connor, K.L., et al, Linkage disequilibrium analysis of D12S391 and vWA in U.S. population and paternity samples, Forensic Sci. Int. Genet. (accepted)

[7] AABB (2009) Guidance for Standards for Relationship Testing Laboratories, 9th ed. AABB, Bethesda, Maryland, 165 pp.

[8] Slooten, K. Validation of DNA-based identification software by computation of pedigree likelihood ratios. Forensic Sci. Int. Genet. (2010), doi:10.1016/j.fsigen.2010.06.005.

Application of Standard Reference Family Data (SRFD) to Assist Kinship Analysis

Using SRFD for Validation of Kinship Analysis Methods

3. Choose the corresponding genotype data for these individuals

4. Calculate kinship statistics using program or algebraic formulas

- Likelihood ratio (LR) value or kinship index; posterior probability 5. Compare kinship statistics between program(s) or algebraic formulas

7. Validate algorithm between programs(s) or algebraic formulas

of Validation Tests

5/2N	1-0.05 ^(0.5N)	
21	35	
935,493	1,539,708	

D21S11 11 10 31,31.2 29,31.2 21

30,31.2

Known genetic pedigree data are helpful to illustrate the discriminatory power gained by adding loci to a common U.S. forensic panel. The candidate SRFD were used for this analysis.

Pairwise comparisons of candidate SRFD provide a good model to evaluate the effect of additional loci on likelihood ratio (LR) values.

SE33 was added to further expand the set of loci.

Known Relationship 1

Parent-offspring (3 vs 1² Full siblings (2 vs 5) Half siblings (13 vs 16) Uncle-niece (2 vs 14) Grandmother-grandchild Cousins (22 vs 23)

SRFD on STRBase

To assist kinship validation activities, the following data will be made available on STRBase, an online resource for the forensic genetics community [4]: - Standard Reference Family Data genotypes and pedigree - Notations of mutations, rare alleles, and null alleles in pedigree - Allele frequency data from major U.S. populations [1-3] - Published likelihood ratio formulas [e.g., 7,8]

We welcome your feedback and ideas about how NIST may assist kinship analysis through standardized datasets and validation support. Contact kristen.oconnor@nist.gov

Acknowledgments and Disclaimer We thank Teresa Snyder-Leiby from SoftGenetics for software demonstration and support. This project was funded by the FBI Criminal Justice Information Services Division and by the National Institute of Justice through interagency agreement 2008-DN-R-121 to the NIST Office of Law Enforcement Standards. Points of view are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials,

instruments, or equipment identified are necessarily the best available for the purpose.

Poster #35

21th International Symposium on Human Identification San Antonio, TX, October 11-14, 2010

Effect of Additional Loci on Kinship Analysis

GeneMarker[®] HID v. 1.90 for analysis

Five loci, recently adopted in Europe, were added to the 15 Identifiler[®] loci.

Locus vWA was removed from analyses with D12S391 due to linkage disequilibrium between the loci [6].

ested vs Unrelated	Likelihood Ratio Values			
	15 STRs (Identifiler)	19 STRs (Identifiler-vWA + 5 Euro)	20 STRs (Identifiler-vWA + 5 Euro + SE33)	
1)	37,901	1,088,585	4,392,287	
	3.0	291	161,550	
	0.4	0.3	0.2	
	0.3	0.7	2.4	
d (1 vs 17)	4.0	2.1	1.0	
	1.5	2.7	2.0	

Five additional STR loci increase discriminatory power for identification of close relatives (parent-offspring, full siblings) by 2-3 orders of magnitude on average (data not shown).

• However, by typing more loci, there is a greater chance of mutation events.

A single highly polymorphic locus (e.g., SE33) can be powerful for identifying first degree relatives if an allele is shared (e.g., in the full sibling example above, locus LR at SE33 = 555).

• However, a large amount of allelic variation exists due to a high mutation rate

More distant relationships remain difficult to identify with 20 STR loci.

Lineage markers, more putative family members, or non-genetic information (with Bayesian statistics) can increase confidence in a kinship test

http://www.cstl.nist.gov/strbase/kinship.htm