Familial Searching of Forensic DNA Databases

Kristen Lewis O'Connor, Ph.D.
National Institute of Standards and Technology

ICFIS, Seattle, WA

July 20, 2011

Outline

- Case aided with familial searching
- Fundamentals of searching for relatives
- Research with New Zealand DNA database
- Ways to increase efficiency of familial searching

Grim Sleeper Case

- 12 victims murdered in Los Angeles (1985-2007)
- Cases linked through firearms analysis

Over a 13 year gap in detected crimes, hence the "Sleeper" nickname

- DNA evidence recovered and searched against state and national database
- California Dept. of Justice initiated a research program to evaluate the use of familial searching
- Program was developed and validated using NIST population data from autosomal and Y-STR markers
- Data are freely available on the STRBase website

Familial Search for the Grim Sleeper

- October 2008: First familial search of the California database (over 1.1 million profiles) yielded no strong possibilities
- June 30, 2010: Second familial search of the California database (over 1.3 million profiles) yielded one likely relative
- Database profile from Christopher Franklin (31 years old)
- Profile added in 2009 after a felony weapons possession charge
- Profiles from Grim Sleeper evidence and C. Franklin shared one allele at all 15 loci
- Both individuals shared the same Y-STR profile

CRIME \& COURTS
Arrest Made in L.A. 'Grim Sleeper' Killings

Familial Searching

- Search unknown evidence profile against forensic DNA database to identify possible close relatives of the true offender
- For no suspect cases, cold cases, violent crimes to develop investigative leads
- Success in the United Kingdom (2004 - Jan. 2011)
- 179 cases submitted; 36 successes/81 cases completed (44.4\% success rate)
- Metadata (age, locality, ethnicity) increase success
- Familial searching programs in the U.S.
- Colorado: all forensic unknowns, 10 identifications, 1 conviction (as of June 2011)
- California: 13 searches, 2 arrests (as of March 2011)
- Virginia: validation completed (March 2011)
- Texas

Fundamentals of Searching for Relatives

Allele Sharing: Parent-Offspring

Single locus example

Probability of sharing alleles from a common ancestor (per locus)

$$
\begin{aligned}
& \operatorname{Pr}(0 \text { alleles })=0 \\
& \operatorname{Pr}(1 \text { allele })=1 \\
& \operatorname{Pr}(2 \text { alleles })=0
\end{aligned}
$$

$$
12,13
$$

1 allele shared between any parent and child

Allele Sharing: Full Siblings

Single locus example

Probability of sharing alleles from a common ancestor (per locus)

$$
\begin{aligned}
& \operatorname{Pr}(0 \text { alleles })=1 / 4 \\
& \operatorname{Pr}(1 \text { allele })=1 / 2 \\
& \operatorname{Pr}(2 \text { alleles })=1 / 4
\end{aligned}
$$

0 alleles shared between these full siblings

Allele Sharing: Half Siblings*

Single locus example

0 alleles shared between
Probability of sharing alleles from a common ancestor (per locus)

$$
\begin{aligned}
& \operatorname{Pr}(0 \text { alleles })=1 / 2 \\
& \operatorname{Pr}(1 \text { allele })=1 / 2 \\
& \operatorname{Pr}(2 \text { alleles })=0
\end{aligned}
$$

How is kinship assessed?

Likelihood Ratio (LR)

Evaluate genotypes to give weight (strength) to compared relationships
$L R=\frac{\text { Probability of genotypes if } 1,2 \text { are full siblings }}{\text { Probability of genotypes if } 1,2 \text { are unrelated }}$

By the definition of a LR:
LR > 1 supports the numerator (alleged relationship)
$L R<1$ supports the denominator (unrelated)

Larger LR values provide more support for the alleged relationship

Research with New Zealand DNA Database

Ph.D. dissertation with
Bruce Weir and Mary-Claire King
UW Genome Sciences

Statistical Modeling

- Assessed the effectiveness of searching for parent-offspring, full sibling, and half sibling (or equivalent) relationships
- Used the New Zealand DNA Database
- 80,000 subjects
- 10-locus profiles
- Performed 1,000 simulations by generating one true relative pair per search

Statistical Modeling

Database Profiles
Index1 Index2 Index3 Index4 Index5 Index6 Index7 Index8 \downarrow
Allele frequencies

Statistical Modeling

Statistical Modeling

Statistical Modeling

Challenge of Identifying True Relatives in a Database

Rank	Index \#
1	Index5243
2	Index1438
3	Parent1
4	Index45677
5	Index39732
6	Index134
7	Index7701
.	.
412	Index22093
413	Index208

Likelihood Ratio (LR)

7048	
5503	
45	- False positive
3	
0	
0	
0	
.	- False positive
.	
0	
0	
0	

- Unrelated individuals may have higher LRs due to chance allele sharing
- Included in subsequent investigation \rightarrow "False positive"
- True relatives will not always have the highest LR
- Potentially not included in subsequent investigation \rightarrow "False negative"

Evaluate how often a true relative will be found in a database search

1. Tracked the ordered rank of the true relative for each of the 1000 simulations
2. Calculated the cumulative frequency of true relatives (counts per rank/1000)
3. Think of frequencies as the empirical probability of finding true relative after investigating a certain proportion of individuals in the database

Ordered Rank Proportion of Database

= rank/database size
$\left.\begin{array}{|c|c|}\hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ - \\ - \\ 412 \\ 413\end{array} \quad \begin{array}{|c}0.002 \\ 0.004 \\ 0.006 \\ 0.008 \\ 0.010 \\ 0.012 \\ 0.014 \\ . \\ . \\ \hline\end{array}\right]$ Top 1\%

108
88
83
46
47
34
27
.
.
0
1

\(\left.\begin{array}{|c|}\hline 0.180

0.088

0.083

0.046

0.047

0.034

0.027

.

.

0

0.001\end{array}\right] \quad\)| 0.444 |
| :--- |
| cumulative |
| frequency |

"In an example database of 500 profiles, the probability of finding the true parentoffspring is 0.444 if the top 1% of LR values are investigated after familial searching."

Probability of finding a true relative given the proportion of the NZ database investigated (10 STR loci, $n=80,000$)

"Simulations indicate that the probability of finding the true parent-offspring is approximately 0.95 if the top 0.1% of $L R$ values are investigated."

Probability of finding a true relative given the proportion of the NZ database investigated (10 STR loci, $n=80,000$)

"Simulations indicate that the probability of finding the true full sibling is approximately 0.95 if the top 3% of LR values are investigated."

Probability of finding a true relative given the proportion of the NZ database investigated (10 STR loci, $n=80,000$)

"Simulations indicate that the probability of finding the true half sibling is approximately 0.95 if the top 44% of LR values are investigated."

Trade-off between False Positives and False Negatives

1. Set LR threshold to filter ranked list of potential relatives.
2. What is the probability that a true relative is in this filtered list (PT)?
3. How many false positives will be included in filtered list (FP)?

LR Threshold	Parent-Offspring		Full Siblings		Half Siblings	
	PT	FP	PT	FP	PT	FP
100	0.95	18	0.70	5	0.03	2
10	1.00	45	0.86	60	0.27	184
1	1.00	79	0.95	440	0.73	4,570

Increasing the LR threshold makes familial searching less efficient but reduces the number of false positive leads

The Reality of Full Sibling Searches

Range of likelihood ratios for true brothers illustrates chance for false leads, even with additional loci

Kinship Statistics for True Full Siblings

Comparison	Likelihood Ratio		
	13 STRs		19 STRs
	571	21,239	
Brother 1	2703	1360	
Brother 2	2	19,991	
Brother 3	1	2	
Brother 4	2	2	

Ways to Increase the Efficiency of Familial Searching

More Success for Within-State Searches

Number of profiles that would have to be investigated for 90% chance of finding true relative*

Relationship	Median state database $\mathrm{n}=100,000$	National database $\mathrm{n}=10,000,000$
Parent-offspring	37	3,700
Full Siblings	134	13,400
Half Siblings	17,441	$1,744,100$

87% of CODIS hits are within state

* Extrapolated results from searching the New Zealand database with 13 CODIS loci

Filter on Y-chromosome

- Missouri has 12 Y-STRs typed on 45,000 (20\%) database samples
- Females are "noise" - contribute to false positives
- Up to 20% of database profiles are female
- Not investigated if additional testing (Y-STR) is required
- Remove female profiles prior to familial search or follow-up with non-genetic information
- What about mitochondrial DNA?
- Sequencing costs are prohibitive
- Linear arrays have low resolution
- Incorporate LR of Y-STR match into search statistic

$$
\text { "Odds" }=\mathrm{LR}_{\text {autosomal STR }} * \mathrm{LR}_{\mathrm{Y}-\mathrm{STR}} * 1 / \mathrm{N}
$$

Myers et al., Searching for first-degree familial relationships in California's offender DNA database. FSI Genetics (in press)

Database Longevity Leads to Parent-Offspring Searches

Demographic of male inmates held in custody in U.S. state or federal prison or in local jails, by age, as of June 30, 2009

Age	Proportion of Male Profiles
$18-19$	0.07
$20-24$	0.14
$25-29$	0.15
$30-34$	0.16
$35-39$	0.14
$40-44$	0.12
$45-49$	0.09
$50-54$	0.06
$55-59$	0.04
$60-64$	0.02
65 or older	0.01

Conclusions

- Using science, a cost-benefit analysis is necessary to balance effort to find relatives against spending limited resources on false leads
- National database searches are not efficient due to large number of false positives
- Not yet a way to effectively follow up on female profiles
- Database age will increase the utility of parent-offspring searches and the efficiency of familial searching

Acknowledgments

NIST
John Butler
Peter Vallone

North Umbria University
Chris Maguire
FBI
Doug Hares

University of Washington
Bruce Weir
Mary-Claire King
ESR, New Zealand
John Buckleton
Funding
NRC Postdoctoral Fellowship NIJ

Presentation will be available on STRBase

http://www.cstl.nist.gov/strbase/
kristen.oconnor@nist.gov

