

Kristen Lewis O'Connor, Ph.D.

National Institute of Standards and Technology

21st International Symposium on Human Identification San Antonio, Texas October 12, 2010

Final version of this presentation available at: http://www.cstl.nist.gov/strbase/NISTpub.htm

Questions to Be Addressed

- How does kinship analysis relate to forensic DNA typing?
- Is there value in examining additional loci?
- What has NIST accomplished with kinship analysis?
- Where can one learn more about these topics?

What is our forensic core competency?

Laying the foundation for a discussion of kinship analysis

Forensic Core Competency

High certainty

determines the *rarity* of the profile

Expanding the Forensic Core Competency

Level of Certainty

Expanding the Forensic Core Competency

What is kinship analysis?

What is kinship analysis?

Evaluation of relatedness between individuals

Applications

Parentage testing (civil or criminal) Disaster victim identification Missing persons identification Familial searching

Immigration

Immigration Testing

U.S. Department of Homeland Security

Anchor may sponsor up to 15 relatives (spouse, parents, siblings, children)

79% of refugee claims were fraudulent based on DNA testing or failure to appear for DNA testing (U.S. Dept. of State)

DHS is looking to require DNA to support relationship claims

Why can kinship analysis be <u>complex</u>?

Direct Matching

Exact match between compared genotypes

Standard STR Typing

Evidence profile ____ **Suspect profile** 8,14 - 10,13 - ...

Direct Matching Exact match between compared genotypes

 Kinship profile 1
 Kinship profile 2

 8,14 - 10,13 - ...
 8,14 - 10,13 - ...

Direct Matching Exact match between compared genotypes

Twins!

2 alleles shared every locus

Probability of Sharing Alleles from a Common Ancestor

Relationship 0 allel		1 allele	2 alleles	
Identical twin	ntical twin 0		1	

Indirect Matching

Parent-Offspring

12,13 1 allele shared at every locus

Probability of Sharing Alleles from a Common Ancestor

Relationship	elationship 0 alleles		2 alleles	
Parent-child	0	1	0	

Indirect Matching Full Siblings

10,15 0 alleles shared at a locus

Probability of Sharing Alleles from a Common Ancestor

Relationship	elationship 0 alleles		2 alleles	
Full siblings	1/4	1/2	1/4	

What information is required for kinship analysis?

- Alleged relationship
- Genotypes of specific markers
- Method to assess the relationship

Paternity Index =Probability of genotypes if "10" is the true father of "21"(Likelihood Ratio)Probability of genotypes if an unrelated man is the father of "21"

Paternity trio

What information is required for kinship analysis?

- Alleged relationship
- Genotypes of specific markers
- Method to assess the relationship

Pedigrees are not always this simple

Paternity trio

Complex Pedigree

- Male
 Female
- *I* Divorce
- 🛛 No data

Why can kinship analysis be complex?

For more distant familial relationships, allele sharing decreases \rightarrow <u>uncertainty increases</u>

Probability of Sharing Alleles from a Common Ancestor

Hig	Relationship	0 alleles	1 allele	2 alleles
Level of Certainty	Parent-child	0	1	0
	Full siblings	1/4	1/2	1/4
	Half siblings	1/2	1/2	0
	Uncle-nephew	1/2	1/2	0
	Grandparent-grandchild	1/2	1/2	0
	First cousins	3/4	1/4	0

Low

Half siblings, uncle-nephew, and grandparent-grandchild are genetically identical

What materials are used for kinship analysis at NIST?

What markers are being studied for kinship analysis?

- 46 autosomal loci
- 17 Y-chromosomal loci
- 15 X-STRs (AFDIL collaboration)
- Mitochondrial control region

Autosomal STR Markers

46 unique STR loci have been characterized at NIST

NIST Sample Set

- NIST U.S. population samples

 254 African American, 261 Caucasian, 139 Hispanic
- U.S. father/son samples
 - 178 African American, 198 Caucasian, 190 Hispanic, 198 Asian
- Extended family samples
 - 6 sets of 3–4 generations
 - 165 total samples

www.cstl.nist.gov/strbase/

NIST Data Analysis Capabilities

Kinship Software

- DNA-VIEW[™] v. 29.23 (Charles Brenner)
- KIn CALc v. 4.0 (CA DOJ, Steven Myers)
- GeneMarker[®] HID v. 1.90 (SoftGenetics)
- FSS DNA Lineage (Forensic Science Service)
- LISA (Future Technologies Inc.)

Population Genetics Software

– Arlequin v. 3.5

What methods are we using to assess kinship?

How is kinship assessed?

Likelihood Ratio (LR)

Evaluate genotypes to give weight (strength) to compared relationships

LR = <u>Probability of genotypes if 1,2 are full siblings</u> Probability of genotypes if 1,2 are unrelated

By the definition of a LR:

- LR > 1 supports the numerator (alleged relationship)
- LR < 1 supports the denominator (unrelated)

Larger LR values provide more support for the alleged relationship

How is kinship assessed?

Goal: How well does a set of loci perform for kinship analysis?

Method: Evaluate "expected" range of LRs for different relationship questions

Need: Graphical method to display the LRs

Solution: Distribution of data points (LR values)

What is a likelihood ratio distribution?

<u>Variables:</u> Allele frequency Number of loci Kinship probabilities (account for shared alleles from common ancestor)

What is a likelihood ratio distribution?

Kinship probabilities (account for shared alleles from common ancestor)

Overlap of likelihood ratio distributions

Overlapping distributions

- Low probability of shared alleles from common ancestor (e.g., first cousin)
- Less discriminating loci genotyped

<u>Variables:</u>

Allele frequency

Number of loci

Kinship probabilities (account for shared alleles from common ancestor)

What kinship questions have we asked with our dataset?

46 unique STR loci have been characterized at NIST

NIST 26plex Assay U.S. Europe (non-commercial) **D1GATA113** TPOX D1S1627 D1S1677 CSF1PO European Standard Set = ESS D2S1776 D5S818 D3S3053 D7S820 **CODIS** loci D3S4529 D13S317 D4S2364 FGA **FGA** D4S2408 vWA vWA D5S2500 D3S1358 D3S1358 7 ESS loci D6S474 D8S1179 D8S1179 ∞ -D6S1017 D18S51 D18S51 D8S1115 D21S11 D21S11 6.3 megabases D9S1122 **TH01 TH01** apart on D9S2157 D16S539 D16S539 D10S1435 chromosome 12 D2S1338 D2S1338 D11S4463 D19S433 D19S433 D12ATA63 Penta D D14S1434 Penta E D17S974 D12S391 D17S1301 D1S1656 5 loci adopted to D2S441 D2S441 expand to 12 ESS loci D10S1248 D10S1248 D22S1045 D22S1045 D18S853 **SE33** D20S482 D20S1082

See poster #40 for details on additional loci

Can D12S391 be used with vWA for kinship analysis?

Are vWA and D12S391 independent? **No!**

Should vWA and D12S391 be multiplied for profile probability calculations in kinship analysis? **No!**

O'Connor KL, et al., Linkage disequilibrium analysis of D12S391 and vWA in U.S. population and paternity samples, *Forensic Sci. Int. Genet.* (in press)

Budowle B, et al., Population genetic analyses of the NGM STR loci, Int. J. Legal Med. (in press)

How do 13 loci perform for kinship analysis?

How do 13 loci perform for kinship analysis?

The degree of overlap corresponds with possible values for false positive or false negative results.

Parent-offspring comparisons: No overlap between unrelated and related LR distributions

Full sibling comparisons: False positive rate = 0.027 False negative rate = 0.033

Half sibling comparisons: False positive rate = 0.155 False negative rate = 0.168 Do additional loci improve the discrimination of true relatives vs. unrelated persons?

How do 20 loci perform for kinship analysis?

Additional loci improve separation of LR distributions for **parent-offspring** and **full siblings**.

Parent-offspring comparisons: No overlap between unrelated and related LR distributions

Full sibling comparisons: False positive rate = 0.006 False negative rate = 0.008

Half sibling comparisons: False positive rate = 0.075 False negative rate = 0.104

How do 40 loci perform for kinship analysis?

Additional loci further improve separation of LR distributions for **parent-offspring** and **full siblings**.

<u>Parent-offspring comparisons:</u> No overlap between unrelated and related LR distributions

<u>Full sibling comparisons:</u> False positive rate = 0.0006 False negative rate = 0.0018

Half sibling comparisons: False positive rate = 0.051 False negative rate = 0.066

Do additional loci improve kinship determination?

Proportion of simulations using

Do additional loci improve kinship determination?

Do additional loci improve kinship determination?

Proportion of simulations using

How can uncertainty in kinship determination be reduced?

How can uncertainty in kinship determination be reduced?

Improve the measurement technique

- Add more family references
- Add more loci
 * More chances for mutation
 - Autosomal STRs* improve identification of parent-offspring and full siblings
 - Lineage markers or SNP arrays may improve identification of more distant relatives

Know your limits... simulate... validate!

How does kinship analysis relate to questions that concern you?

Expanding the Forensic Core Competency

Level of Certainty

Expanding the Forensic Core Competency to Familial Searching

- One-to-many search \rightarrow many false positives
- Allele sharing method
 - Partial match between evidence profile and database profile
 - Miss true relatives
 - Especially full siblings (1/4 probability of sharing 0 alleles at a locus)
 - Introduce many false positives due to chance allele sharing
- Likelihood ratio approach
 - Kinship probabilities plus allele frequencies account for allele sharing due to familial relationship
- Reduce uncertainty with additional loci (autosomal STRs, Y-STRs)

What is NIST doing to improve kinship analysis?

What is NIST doing to improve kinship analysis?

Allele frequencies for U.S. population samples

Evaluation of new loci See Poster #40 tomorrow

Concordance testing of new multiplexes

Developed a new website to support kinship analysis

Kinship Resource Page on STRBase

www.cstl.nist.gov/strbase/kinship.htm

NIST Standard Reference Family Data

Aid validation of algorithms, software, and loci selection for kinship analysis

- Use genotypes with known inheritance
- Compare LRs from algebraic and software calculations
- Test algorithms for mutation, rare alleles, null alleles, incest
- Evaluate use of additional loci to detect relationships

See Poster #35 today

Acknowledgments

Applied Genetics Group Leader

Butler Workshops **DNA Biometrics Project Leader**

Kristen Peter Erica John Becky Lewis O'Connor Vallone Butts Hill Concordance **Kinship Analysis** Rapid PCR **DNA Extraction** & Textbooks & LT-DNA & Biometrics Efficiency

Kinship Page on STRBase http://www.cstl.nist.gov/strbase/kinship.htm kristen.oconnor@nist.gov

Funding

NRC – Postdoctoral fellowship support for Kristen O'Connor

- FBI Application of DNA Typing as a Biometric Tool
- NIJ Forensic DNA Standards, Research, and Training