Effect of Additional Loci on Likelihood Ratio Values for Complex Kinship Analysis

Kristen Lewis O'Connor, Ph.D.

National Institute of Standards and Technology
$21^{\text {st }}$ International Symposium on Human Identification San Antonio, Texas
October 12, 2010

Final version of this presentation available at: http://www.cstl.nist.gov/strbase/NISTpub.htm

Questions to Be Addressed

- How does kinship analysis relate to forensic DNA typing?
- Is there value in examining additional loci?
- What has NIST accomplished with kinship analysis?
- Where can one learn more about these topics?

What is our forensic core competency?

Laying the foundation for a discussion of kinship analysis

Forensic Core Competency

Direct match

High certainty

Reference Profiles (K_{1} to K_{n})
Evidence profile

Random Match Probability determines the rarity of the profile

Expanding the Forensic Core Competency

Expanding the Forensic Core Competency

What is kinship analysis?

What is kinship analysis?

Evaluation of relatedness between individuals

Applications
Parentage testing (civil or criminal)
Disaster victim identification

Missing persons identification
Familial searching
Immigration

Immigration Testing U.S. Department of Homeland Security

Anchor may sponsor up to 15 relatives (spouse, parents, siblings, children)
79% of refugee claims were fraudulent based on DNA testing or failure to appear for DNA testing (U.S. Dept. of State)

DHS is looking to require DNA to support relationship claims

Why can kinship analysis be complex?

Direct Matching

 Exact match between compared genotypesStandard
STR Typing
Evidence profile \longrightarrow Suspect profile

$$
8,14-10,13-\ldots \quad 8,14-10,13-\ldots
$$

Direct Matching

Exact match between compared genotypes

Kinship
Analysis?

Kinship profile 1
8,14-10,13-...

Kinship profile 2 8,14-10,13-...

Direct Matching

 Exact match between compared genotypesKinship
Analysis

$12,13 \quad 12,13$

Twins!

Probability of Sharing Alleles from a Common Ancestor

Relationship	$\mathbf{0}$ alleles	1 allele	2 alleles
Identical twin	0	0	$\mathbf{1}$

Indirect Matching Parent-Offspring

12,13 1 allele shared at every locus

Probability of Sharing Alleles from a Common Ancestor

Relationship	0 alleles	1 allele	2 alleles
Parent-child	0	1	0

Indirect Matching Full Siblings

Probability of Sharing Alleles from a Common Ancestor

Relationship	0 alleles	1 allele	2 alleles
Full siblings	$\mathbf{1} / \mathbf{4}$	$1 / 2$	$1 / 4$

What information is required for kinship analysis?

- Alleged relationship
- Genotypes of specific markers
- Method to assess the relationship

Paternity Index = Probability of genotypes if " 10 " is the true father of " 21 "
(Likelihood Ratio) Probability of genotypes if an unrelated man is the father of " 21 "

12,13
Paternity trio

What information is required for kinship analysis?

- Alleged relationship
- Genotypes of specific markers
- Method to assess the relationship

> Pedigrees are not always this simple

Paternity trio

Complex Pedigree

\square Male
O Female
// Divorce
凹 No data

Why can kinship analysis be complex?

For more distant familial relationships, allele sharing decreases \rightarrow uncertainty increases

Probability of Sharing Alleles from a Common Ancestor

High	Relationship	0 alleles	1 allele	2 alleles
	Parent-child	0	1	0
.	Full siblings	1/4	1/2	1/4
※	Half siblings	1/2	1/2	0
웅	Uncle-nephew	1/2	1/2	0
-	Grandparent-grandchild	1/2	1/2	0
\downarrow	First cousins	3/4	1/4	0

Half siblings, uncle-nephew, and grandparent-grandchild are genetically identical

What materials are used for kinship analysis at NIST?

What markers are being studied for kinship analysis?

- 46 autosomal loci
- 17 Y-chromosomal loci
- 15 X-STRs (AFDIL collaboration)
- Mitochondrial control region

Autosomal STR Markers

46 unique STR loci have been characterized at NIST
U.S. Europe

NIST 26plex Assay

D1GATA113
D1S1627
D1S1677
D2S1776
D3S3053
D3S4529
D4S2364
D4S2408
D5S2500
D6S474
D6S1017
D8S1115
D9S1122
D9S2157
D10S1435
D11S4463
D12ATA63
D14S1434
D17S974
D17S1301
D2S441
D10S1248
D22S1045
D18S853
D20S482
See poster \#40 for details on additional loci
D20S1082

NIST Sample Set

- NIST U.S. population samples
- 254 African American, 261 Caucasian, 139 Hispanic
- U.S. father/son samples
- 178 African American, 198 Caucasian, 190 Hispanic, 198 Asian
- Extended family samples
- 6 sets of 3-4 generations
- 165 total samples

NIST Data Analysis Capabilities

Kinship Software

- DNA-VIEW ${ }^{\text {TM }}$ v. 29.23 (Charles Brenner)
- KIn CALc v. 4.0 (CA DOJ, Steven Myers)
- GeneMarker ${ }^{\oplus}$ HID v. 1.90 (SoftGenetics)
- FSS DNA Lineage (Forensic Science Service)
- LISA (Future Technologies Inc.)

Population Genetics Software

- Arlequin v. 3.5

What methods are we using to assess kinship?

How is kinship assessed?

Likelihood Ratio (LR)

Evaluate genotypes to give weight (strength) to compared relationships
$L R=\frac{\text { Probability of genotypes if } 1,2 \text { are full siblings }}{\text { Probability of genotypes if } 1,2 \text { are unrelated }}$

By the definition of a LR:
LR > 1 supports the numerator (alleged relationship)
$L R<1$ supports the denominator (unrelated)

Larger LR values provide more support for the alleged relationship

How is kinship assessed?

Goal: How well does a set of loci perform for kinship analysis?

Method: Evaluate "expected" range of LRs for different relationship questions

Need: Graphical method to display the LRs

Solution: Distribution of data points (LR values)

What is a likelihood ratio distribution?

Computer simulations can generate many genotype combinations and relatedness scenarios (pedigrees)

Calculate LR values for each pedigree

Generate LR distributions

```
Moderate support for
relationship
ness
```


Variables:
Allele frequency
Number of loci
Kinship probabilities (account for shared alleles from common ancestor)

What is a likelihood ratio distribution?

LR threshold = 1

Variables:
Allele frequency
Number of loci

Separate distributions

- High probability of shared alleles from common ancestor (e.g., parent-offspring)
- Discriminating loci genotyped

Kinship probabilities (account for shared alleles from common ancestor)

Overlap of likelihood ratio distributions

LR threshold = 1

Overlapping distributions

- Low probability of shared alleles from

Variables:
Allele frequency
Number of loci
Kinship probabilities (account for shared alleles from common ancestor)

What kinship questions have we asked with our dataset?

46 unique STR loci have been characterized at NIST

Can D12S391 be used with vWA for kinship analysis?

6.3 megabases apart on chromosome 12

UCSC Genome Browser, Feb. 2009 assembly

Are vWA and D12S391 independent? No!
Should vWA and D12S391 be multiplied for profile probability calculations in kinship analysis? No!

How do 13 loci perform for kinship analysis?

How do 13 loci perform for kinship analysis?

The degree of overlap corresponds with possible values for false positive or false negative results.

Parent-offspring comparisons: No overlap between unrelated and related LR distributions

Full sibling comparisons:
False positive rate $=0.027$
False negative rate $=0.033$

Half sibling comparisons:
False positive rate $=0.155$
False negative rate $=0.168$

Do additional loci improve the discrimination of true relatives vs. unrelated persons?

How do 20 loci perform for kinship analysis?

Additional loci improve separation of LR distributions for parent-offspring and full siblings.

Parent-offspring comparisons: No overlap between unrelated and related LR distributions

Full sibling comparisons:
False positive rate $=0.006$
False negative rate $=0.008$

Half sibling comparisons:
False positive rate $=0.075$
False negative rate $=0.104$

How do 40 loci perform for kinship analysis?

Additional loci further improve separation of LR distributions for parent-offspring and full siblings.

Parent-offspring comparisons: No overlap between unrelated and related LR distributions

Full sibling comparisons:
False positive rate $=0.0006$
False negative rate $=0.0018$

Half sibling comparisons: False positive rate $=0.051$
False negative rate $=0.066$

Do additional loci improve kinship determination?

Do additional loci improve kinship determination?

Do additional loci improve kinship determination?

How can uncertainty in kinship determination be reduced?

How can uncertainty in kinship determination be reduced?

Improve the measurement technique

- Add more family references
- Add more loci
* More chances for mutation
- Autosomal STRs* improve identification of parent-offspring and full siblings
- Lineage markers or SNP arrays may improve identification of more distant relatives

Know your limits... simulate... validate!

How does kinship analysis relate to questions that concern you?

Expanding the Forensic Core Competency

Expanding the Forensic Core Competency to Familial Searching

- One-to-many search \rightarrow many false positives
- Allele sharing method
- Partial match between evidence profile and database profile
- Miss true relatives
- Especially full siblings ($1 / 4$ probability of sharing 0 alleles at a locus)
- Introduce many false positives due to chance allele sharing
- Likelihood ratio approach
- Kinship probabilities plus allele frequencies account for allele sharing due to familial relationship
- Reduce uncertainty with additional loci (autosomal STRs, Y-STRs)

What is NIST doing to improve kinship analysis?

What is NIST doing to improve kinship analysis?

Allele frequencies for U.S. population samples

Evaluation of new loci See Poster \#40 tomorrow

Concordance testing of new multiplexes

Developed a new website to support kinship analysis

Kinship Resource Page on STRBase

 www.cstl.nist.gov/strbase/kinship.htm
NIST Standard Reference Family Data

 Aid validation of algorithms, software, and loci selection for kinship analysis- Use genotypes with known inheritance
- Compare LRs from algebraic and software calculations
- Test algorithms for mutation, rare alleles, null alleles, incest
- Evaluate use of additional loci to detect relationships

See Poster \#35 today

Acknowledgments

Applied
Genetics

Applied Genetics Group Leader

John
Butler
Workshops \& Textbooks

Becky Hill

Concordance \& LT-DNA

DNA Biometrics
Project Leader

Peter
Vallone

Rapid PCR
\& Biometrics

Kristen
Lewis O'Connor

Erica
Butts
Kinship Analysis DNA Extraction Efficiency

Kinship Page on STRBase

 http://www.cstl.nist.gov/strbase/kinship.htm kristen.oconnor@nist.gov
Funding

NRC - Postdoctoral fellowship support for Kristen O'Connor
FBI - Application of DNA Typing as a Biometric Tool
NIJ - Forensic DNA Standards, Research, and Training

