

Present and Future Technological Advances in Human Identification

NIST Disclaimer · This project was supported by NIJ Grant Number 1999-IJ-R-A094 and 2003-IJ-R-029, which is an interagency agreement between NIJ and the NIST Office of Law Enforcement Standards. Points of view in this document are those of the authors and do not necessarily represent the official position or policies of the US Department of Justice. Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.

http://www.cstl.nist.gov/biotech/strbase/

Electrophoresis 2004, 25, 1397-1	412	Co	ntents	
Review John M. Butler ¹ Eric Buel ² Federica Criveliente ³⁺ Bruce R. McCord ¹ ¹ National Institute of Standards and Technology Division, Gaithersburg, MD, USA Gaithersburg, MD, USA Gaithersburg, MD, USA Matehung, VT, USA	Forensic DN, using the AB for STR analy DNA typing with sho applications including using as the AB Pres for many laboratories ing sample preparat result using CE syst erred in the output throughput and ease	1 1.1 2 3 3.1 5 5.1 5.2 6 6.1 6.2 7 7.1	Introduction	13 14 14 14 14 14 14 14 14 14 14 14 14 14

Validation Standardization Questionnaire (conducted June-August 2004) NIS Can Validation be Standardized? Statements from survey responders... Over 86% (45/52) said yes Those who responded "no" said - "to some degree it can be, however, validation is specific to the platform, kits, ... "a start-up lab should do much more than an experienced lab...",

- "validation builds on previous work by lab or published data", "parts of it can be standardized; I don't think the non-probative cases could be", and
- "only in a general way, as with the SWGDAM guidelines. The uniqueness of each new procedure would make standardization difficult."

Our Conclusion...

to a certain extent it can...but everyone will always have a different comfort level...and inflexible, absolute numbers for defined studies will not likely be widely accepted

New Valida	ition .cstl	n Homep <mark>.nist.gov/b</mark>	age on STRI <mark>iotech/strbase/v</mark>	Base N validation.ht	S۲ m
Validation Inform	ation	to Aid Fore	ensic DNA Laborat	ories	
🛿 Validation Summa	ry She	ets			
7 We are initiating an effort literature. The purpose of	to catalo this effor	Attion () http://www.calinet.go	Solation at usion that have hoor datad/#5ashabter/95_5eeRe/76s	oublished in the	- 0
tested, and the number of efforts by forensic DNA la SWGDAM Revised Valid documented and summar	samples boratorie ation Gui ized."	PowerPlax Y Validation Reference Horne et al. (2009) StateCompleted Eingle Source (Concordance)	What validated? Formac Sci art 148(1):114 Where Descriptions of Samples Tested Institution (1) 5 Samples x 8 lists 6 June 12 Winnsters series x 11 rabox (1)(1)(1)	# Ban 40	
Below is listed a compilal STR kits, in-house assays full reference bibliography	tion of re i, instrum is listed	Midure Rato (male female) Mature Rato (male male) Sensitivity Non-Human	91,51,21,11,12,15,19,119,01) 60.03)	122 132 84 24	
specific Validation Sum	mary Sł	Precision (HBI 3192 and ADI 377)	6 components of 04% 2395 10 ladder replicates + 10 cample replicated + (8 la	dders + 8 samples for 377)	*
Kit, Assay, or Instrument	Refer	Non-Probable Callet Shifter	65 cases with 102 samples 412 males used	How?	102 412
PowerPlex Y	Kreni	Peak Height Rate Cycling Parameters Accession Terrosouthing	NAA (except for DY/S105 but he studies were noted 5 cycles (20/27/26/25/24) x 8 punch sizes x 2 samp 5 lates x 5 between the S10/25/26/28 20/1 x 5 punch	ies .	80
Profiler Plus	Frank al. (2 Pawli	Reaction volume Thermal cycler test Male specificity	5 volumes (50251512 56 25) a (5 emisures - 5 o 4 modets (4002400/96059700) x 1 sample - (2 m 2 females x 1 titration sames (5-500 ng temate DN	oncentralizara) rodelo x 3 seto x 12 samples) Ni x 5 amounto	50 76 10
COffier	LaFo et.ar	Tagoord polymerase Multon Primer pair Bration Magnesium Mattern	5 amounts (1.39/2.05/2.15/2.444.13.13.15 × 4 quarter 5 amounts (0.5v/0.25/141.5v/20 × 4 quarters (1.6 5 amounts (1.7).25/1.5/1.75/2.mM Mot × 4 quarters	es (10:50 250 12 kg DNA) 156 250 15 kg DNA) 110 50 260 13 kg DNA)	20 20 28
SGM Plus	Cotto			TOTAL SAMPLES EXAMINED	1269
AmpFISTR Blue AmpFISTR Oneen I	Walli Holt	Cumments: Oth	er information and c	onclusions	

Validation	Summary Sheet for PowerPlex Y	NIST
Study Completed (17 studies done)	Description of Samples Tested (performed in 7 labs and Promega)	# Run
Single Source (Concordance)	5 samples x 8 labs	40
Mixture Ratio (male:female)	6 labs x 2 M/F mixture series x 11 ratios (1:0,1:1,1:10,1:100,1:300,1:1000,0.5:300, 0.25:300,0.125:300, 0.0625:300, 0.03:300 ng M:F)	132
Mixture Ratio (male:male)	6 labs x 2 M/M mixtures series x 11 ratios (1:0, 19:1, 9:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:9, 1:19, 0:1)	132
Sensitivity	7 labs x 2 series x 6 amounts (1/0.5/0.25/0.125/0.06/0.03)	84
Non-Human	24 animals	24
NIST SRM	6 components of SRM 2395	6
Precision (ABI 3100 and ABI 377)	10 ladder replicates + 10 sample replicated + [8 ladders + 8 samples for 377]	36
Non-Probative Cases	65 cases with 102 samples	102
Stutter	412 males used	412
Peak Height Ratio	N/A (except for DYS385 but no studies were noted)	
Cycling Parameters	5 cycles (28/27/26/25/24) x 8 punch sizes x 2 samples	80
Annealing Temperature	5 labs x 5 temperatures (54/58/60/62/64) x 1 sample	25
Reaction volume	5 volumes (50/25/15/12.5/6.25) x [5 amounts + 5 concentrations]	50
Thermal cycler test	4 models (480/2400/9600/9700) x 1 sample + [3 models x 3 sets x 12 samples]	76
Male-specificity	2 females x 1 titration series (0-500 ng female DNA) x 5 amounts each	10
TaqGold polymerase titration	5 amounts (1.38/2.06/2.75/3.44/4.13 U) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Primer pair titration	5 amounts (0.5x/0.75x/1x/1.5x/2x) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Magnesium titration	5 amounts (1/1.25/1.5/1.75/2 mM Mg) x 4 quantities (1/0.5/0.25/0.13 ng DNA)	20
Krenke et al. (2005) Forensic	Sci. Int. 148: 1-14 TOTAL SAMPLES EXAMINED	1269

For more information, see J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, pp. 133-138

10/10 0	CDIG IOCI alle		
Locus	STR Kits/Assays Compared	Results	Reference
VWA	PP1.1 vs ProPlus	Loss of allele 19 with ProPlus ; fine with PP1.1	Kline et al. (1998)
D5S818	PP16 vs ProPlus	Loss of alleles 10 and 11 with PP16 ; fine with ProPlus	Alves et al. (2003)
D13S317	Identifiler vs miniplexes	Shift of alleles 10 and 11 due to deletion outside of miniplex assay	Butler et al. (2003), Drabek et al. (2004)
D16S539	PP1.1 vs PP16 vs COfiler	Loss of alleles with PP1.1 ; fine with PP16 and COfiler	Nelson et al. (2002)
D8S1179	PP16 vs ProPlus	Loss of alleles 15, 16, 17, and 18 with ProPlus; fine with PP16	Budowle et al. (2001
FGA	PP16 vs ProPlus	Loss of allele 22 with ProPlus ; fine with PP16	Budowle and Sprecher (2001)
D18S51	SGM vs SGM Plus	Loss of alleles 17, 18, 19, and 20 with SGM Plus; fine with SGM	Clayton et al. (2004)
CSF1PO	PP16 vs COfiler	Loss of allele 14 with COfiler; fine with PP16	Budowle et al. (2001
TH01	PP16 vs COfiler	Loss of allele 9 with COfiler; fine with PP16	Budowle et al. (2001
D21S11	PP16 vs ProPlus	Loss of allele 32.2 with PP16; fine with ProPlus	Budowle et al. (2001

	Variation in the Flanking Region Can Cause Variant Alleles											
D7S820 Example: commonly observed x .3 and x .1 alleles												
Likely poly(Likely the result of a variation in the number of T's found in a poly(T) stretch 13 bases downstream of the core GATA repeat. (Egyed, B. <i>et al. Forensic Sci. Int.</i> 2000, 113, 25-27). http://www.cstl.nist.gov/biotech/strbase/var d782.htm											
Allele Designation	Allele Size	Instrument	Amp Kit*	Contributor	Verification/Conformation Method(s)	Notes	Frequency					
12.1 [3]	281.65	ABI 310	PR	Kelly Duffy/R.Rubocki								
					Observed both from suspect							
12.1 [4]	281.5	ABI 310	PR	Gintautas Svilpa	and crime scene stain		1					
12.1 [5]	283.85	ABI 377	PS	Catherine Allor	Reamplified and Reanalyzed	Paternity samples only	1 in 11100					
12.3	285.43	ABI 377	CO	Kelly Solis, Texas DPS	Re-extraction	Convicted offender	1 in 68000					
13.1	286.8	ABI 310	PR. MP	Margaret Kline	Reamplified with two kits.		1 in 600 samples					
13.1 [2]	287.58	ABI 377	CO, PS	Nicole Swinton	Re-extracted and Reamplified	1						

Mole. Frequency at the time of reporting		
	'	
12.3 frequency 1 in 68000		
13.1 frequency 1 in 600		

				/0 4	Commign	140 1403	- 98av		_	
Target [DN	A] ng/µL	1.5	0.5	0.5	0.16	0.16	0.05	0.05	0.05	
Method	New	А	В	Е	с	F	D	G	н	
Quantifiler	37	100	100	100	100	100	100	100	100	
other RT-PCR	23	100	100	100	100	100	100	100	100	
"ACES"	14	100	100	100	100	100	100	100	100	
AluQuant	13	100	100	100	100	100	100	100	100	
PicoGreen	12	100	100	92	100	100	92	83	83	
ECL	75	100	99	99	93	95	84	77	87	
TMB	98	100	100	99	93	94	59	62	63	
Yield gel	14	57	0	0	0	0	0	0	0	
	286									

Mixture Interpretation Interlab Study (MIX05) Only involves interpretation of data As of early March, ~97 labs are enrolled for participation (22 from overseas) Four mock cases supplied with "victim" and "evidence" electropherograms (GeneScan .fsa files - that can be converted for Mac or GeneMapper; gel files MAC & NT made available to FMBIO labs) Data available with Profiler Plus, COfiler, SGM Plus, PowerPlex 16, Identifiler, PowerPlex 16 BIO (FMBIO) kits Summary of results with involve training materials to illustrate various approaches to solving mixtures

15 evelopment of miniSTRs: Past Work PCR Product Size (bp) 100 150 175 200 250 300 125 225 275 COfiler™ AMEL **TH01** CSE1PO TPOX MMMM adapted to CE analysis with 223 bp addition of fluorescent dy TPOX individual to one primer. TPOX 150 bp size reduction From Oct 2000 Poster presented in Biloxi, MS 73 bp

New primer sets are intended to aid with typing degraded DNA samples as well as future microchip CE and mass spectrometry applications...

TPOX small

NIST Comparison of PCR Amplification Success Rates with Commercial Kit vs. miniSTR Assays for 15 STR loci PowerPlex 16 Study with 31 bones from the "Body Farm" (Knoxville, TN) and Franklin County Coroner's Office (OH) Three amps for 12 STR loci 183 b **Big Miniple:** 200 hz 100 bp 325 Chung, et al., The application of miniplex primer sets in the DNA profiling of human skeletal remains, submittee

Standau http: 260 Caucasians, 2	rd U.S. Population [//www.cstl.nist.gov/biotech/strbase/NIS 600 African Americans, 140 Hispanics, 3	Dataset NST ^{Tpop.htm} 3 Asians = 663 males
Genetic Markers	Loci Examined	Publications
Common STRs	D2S1338 and D19S433	Butler et al. (2003) JFS
miniSTRs New autosomal STRs	information has been provided to the FBI for inclusion in PopStats to aid statistical calculations	Drabek et al. (2004) JFS Coble et al. (2005) JFS
Autosomal SNP	s 70 C/T SNPs (Orchid panel)	Vallone et al. (2004) FSI
Common Y-STRs	22 loci (27 regions) Yfiler concordance study	Schoske et al. (2004) FSI Data in ABI Yfiler database
New Y-STRs	27 additional loci	Butler et al., in press FSI
Y-SNPs	50 loci spanning haplogroups A-R	Vallone et al. (2004) JFS
mtDNA	LINEAR ARRAY and coding mtSNPs Full control regions by AFDIL	Kline et al. (2005) JFS inclusion in EMPOP

NIS

Our Recent Y-Chromosome Work NGT pdf files available at http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

- Schoske, R., Vallone, P.M., Kline, M.C., Redman, J.W., Butler, J.M. (2004) High-throughput Y-STR typing of U.S. populations with 27 regions of the Y chromosome using two multiplex PCR assays, *Forensic Sci. Int.* 139: 107-121.
- Vallone, P.M. and Butler, J.M. (2004) Multiplexed assays for evaluation of Y-SNP markers in U.S. populations. *Progress in Forensic Genetics* 10, Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1261, 85-87.
- Butler, J.M. and Schoske, R. (2004) Forensic value of the multi-copy Y-STR marker DYS464. Progress in Forensic Genetics 10, Elsevier Science: Amsterdam, The Netherlands, International Congress Series 1261, 278-280.
- Butter, J.M. and Schoske, R. (2004) Duplication of DYS19 flanking regions in other parts of the Y chromosome. Int. J. Legal Med., 118: 178-183.
- Vallone, P.M. and Butler, J.M. (2004) Y-SNP typing of U.S. African American and Caucasian samples using allele-specific hybridization and primer extension. J. Forensic Sci. 49(4): 723-732.
- Butler, J.M., Decker, A.E., Kline, M.C., Vallone, P.M. (2005) Chromosomal duplications along the Ychromosome and their potential impact on Y-STR interpretation, J. Forensic Sci., in press.
- Butler, J.M., Decker, A.E., Vallone, P.M., Kline, M.C. (2005) Allele Frequencies for 27 Y-STR Loci with U.S. Caucasian, African American, and Hispanic Samples, *Forensic Sci. Int., in press.*

Mitochondrial DNA Work

 Evaluation of Roche LINEAR ARRAY screening assay

Kline et al. (2005) JFS 50: 377-385

- Comparison of LINEAR ARRAY resolution to control region sequencing performed by AFDIL
- Collaboration with AFDIL for developing coding SNP assays using SNaPshot

Coble, M.D., Just, R.S., O'Callaghan, J.E., Letmanyi, I.H., Peterson, C.T., Invin, J.A., Parsons, T.J. (2004) Single nucleotide polymorphisms over the entire mIDNA genome that increase the power of forensic testing in Caucasians. Int. J. Legal Med., 118: 137-146.

Vallone, P.M., Just, R.S., Coble, M.D., Butler, J.M., Parsons, T.J. (2004) A multiplex allelespecific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome. Int. J. Legal Med., 118: 147-157.

 Mito "Strips"
Roche Applied Science (Indianapolis, IN) recently released a mtDNA typing kit
LINEAR ARRAY Mitochondrial DNA HVI/HVII Region-Sequence Typing Kit
Cat. No. 03 527 867 001
Cost \$1500 for 50 reactions
NIST was involved in beta-testing and performed a population study with these LINEAR ARRAYs

		**			Au C	tom Color Te	atec [·] De <mark>can I</mark>	l Wa velc Profil	ashin pme plot – p	g & nt proces	N ses	JIST
				*		24 s ~2 f 2 or	strips nours 3 run	per ru per ru s easi	n n ily perfo	rmed p	per d	ау
Step	File	Time	Temp	Solution	16	Cool		25.90		1		
1	Temp		55 °C		17	Dien		25.90	Waeh			
2	Disp		55 °C	Wash	18	Aen		25.90				
3	Pause		55 °C		19	Disp		25 °C	Citrate			
4	Inc	15 min	55°C		20	Inc	5 min	25 °C				
5	Asp		55°C		21	Asn		25 °C				
6	Disp		55°C	Wash	22	Disp		25 °C	Color Dev			
<u> </u>	Asp		55 °C		23	Inc	15 min	25 °C				
8	Disp		00°C	Conjugate	24	Asp		25 °C				
9	Inc	5 min	55 °C		25	Disp		25 °C	DI Water	1		
10	Asp		55 °C		26	Asp		25 °C				
11	Disp		55 °C	Wash	27	Disp		25 °C	DI Water			
12	Asp		55 °C		28	Inc	5 min	25 °C		1		
13	Disp		55 °C	Wash	29	Asp		25 °C		1		
14	Inc	12 min	55 °C		30	Disp		25 °C	DI Water	1		
15	Asp		55 °C		31	End		25 °C		1		

NE

	"Blank	" Calls	on Ll	NEAR ARRAYs N📟
We observe *Different individu analysis the bland	d 640 "blank uals typing as a b ks are considered	s" (9.6% of ca lank for the same d to represent the	alls) on 346 probe region con same variant (se	different individuals (52% of samples typed) Jd have different substitutions but for the purposes of data the Melton <i>et al.</i> (2001) <i>J. Forensic Sci.</i> 46(1):46-52)
SSO Probe Region	Number Observed	Frequency	Budowle et al. (1999) Cau, AA, His	16000, ¹⁴ , ¹⁶ , ¹⁰ , ¹⁶ , ¹⁶ , ¹⁰ , ¹⁶ , ¹⁰ , ¹⁶ , ¹⁰ , ¹⁶ , ¹⁰ , ¹⁶ ,
16093	23	3.5%		
HVIA	33	5.0%	3, 9, 3%	
HVIC	76	11.4%	3, 20, 10%	PCR product fails to hybridize to any
HVID	33	5.0%	7, 17, 4%	polymorphisms in the probe region
HVIE	60	9.0%		that prevent hybridization
HVIIA	3	0.5%	0, 0, 0%	Probe Region HVIIB
HVIIB	96	14.4%	16, 70, 55%	146 150 152
HVIIC	122	18.3%	11, 47, 13%	IIB 1 C C T C A T C C T A T IIB 2 C
HVIID	42	6.3%	5, 5, 18%	IIB 3 C IIB 4 C C
189	152	22.8%		
			Blanks expected based on full sequence analysis of 1393 individuals	Nucleotide positions 151 and 153 are common variants in African Americans

Ty Ni	ping fr IST po	equenciopulation	es for 666 samples	Summary of Our Population							
#*	Freq	% Types	% People	Typing with Roche mtDNA							
1	185	65.6	27.8	LINEAR ARRAYS							
2	46	16.3	13.8								
3	18	6.4	8.1								
4	4	1.4	2.4	•282 different types							
5	3	1.1	2.3	•185 were unique							
6	4	1.4	3.6	(occurred only once)							
7	1	0.4	1.1	(Occurred only once)							
8	9	3.2	10.8	•51 samples had "Most							
9	2	0.7	2.7	Common Type"							
10	4	1.4	6.0								
11	1	0.4	1.7								
12	1	0.4	1.8								
18	1	0.4	2.7								
23	1	0.4	3.5								
28	1	0.4	4.2								
51	1	0.4	7.7	"Most Common Type" evaluated further							
	with mtDNA coding region SNP assay										

HV1/H∖ Haplo	/2 An grou	dersor p H	n (CRS)	51		oche m AR AR 11111	ntDNA RAYS: 111	N	S				
site	rCRS	1	1	1	1	2	2	3	4	4	5	12	15
3010	G	Α	G	G	G	Α	G	G	G	G	G	G	Α
4793	Α	А	A	Α	Α	A	Α	Α	A	G	А	A	A
10211	С	С	С	С	С	С	С	С	С	С	С	С	С
5004	Т	Т	С	Т	Т	Т	Т	Т	т	Т	Т	Т	Т
7028	С	С	С	С	Т	С	Т	С	Т	С	С	С	С
7202	Α	А	А	А	Α	A	Α	А	A	А	А	A	Α
16519	т	Т	Т	С	Т	С	С	Т	Т	С	С	С	С
12858	С	С	С	С	С	С	С	С	С	С	С	С	С
4580	G	G	G	G	G	G	Α	G	Α	G	G	G	G
477	т	Т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	Т
14470	Т	Т	Т	A	Т	Т	Т	Т	Т	Т	Т	Т	Т
	14470 T												

ompariso	n of C	Other U	I.S. Pop	ulation Data wit	h SSO Probe
Population	N	#types	diversity	Most Common Type	MCT frequency
Caucasian	922	226	0.964	11111111	15.4%
African Am	805	251	0.983	12112021	6.8%
	666	170	0.963	12122011	11.7%
Hispanic	000	1 1/0			
Hispanic Total	2282	502	0.998	11111111	7.2%
Hispanic Total 8 regions, 2 Population	2282 21 prok	502 bes, 13 S	0.998	11111111 Melton et al. (2001) J. Fore Most Common Type	7.2% nsic Sci. 46(1): 46-52
Hispanic Total 8 regions, 2 Population Caucasian	2282 21 prok	502 502 #types 116	0.998 NPs diversity 0.960	11111111 Melton <i>et al.</i> (2001) <i>J. Fore</i> Most Common Type 111111111	7.2% nsic Sci. 46(1): 46-52 MCT frequency 16.4%
Hispanic Total 8 regions, 2 Population Caucasian African Am	2282 21 prot N 286 252	502 502 #types 116 129	0.998 0.998 diversity 0.960 0.977	Melton et al. (2001) J. Fore Most Common Type 111111111 1141224211	7.2% nsic Sci. 46(1): 46-52 MCT frequency 16.4% 10.7%
Hispanic Total 8 regions, 2 Population Caucasian African Am Hispanic	333 2282 21 prot N 286 252 128	#types 116 129 74	0.998 0.998 diversity 0.960 0.977 0.954	1111111 Melton et al. (2001) J. Fore Most Common Type 1111111111 1141224211 1102120111	7.2% nsic Sci. 46(1): 46-52 MCT frequency 16.4% 10.7% 16.4%

http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm