NIJ-Funded Research in Forensic DNA at the National Institute of Standards and Technology

John M. Butler

Group Leader, Applied Genetics

NIST Human Identity Project Teams within the Applied Genetics Group

Forensic DNA Team

Guest Researcher

DNA Biometrics Team

Funding from the FBI S&T Branch

through NIST Information Access Division

Funding from the **National Institute of Justice (NIJ)** through NIST Office of Law Enforcement Standards

John Butler

Mike Coble

Becky Hill

Margaret Kline

Manuel **Fonde**vila Alvarez

Data

Analysis

Support

Pete Vallone

Erica Butts

Kevin Kiesler

STRBase, Workshops & Textbooks

Mixtures, mtDNA & Y

Concordance & LT-DNA

SRM work, variant alleles & Cell Line ID

Office Manager
Patti Rohmiller

Rapid PCR, ABI 3500
Direct PCR & DNA
& Biometrics Extraction

PLEX-ID & NGS Exploration

Current Activities at NIST Enabled by Our NIJ Partnership

Standard Reference Materials STRBase website

- SRM 2372 (DNA quant)
- SRM 2391c (STRs), 2395 (Y-STRs), 2392 (mtDNA)

Technology Evaluation and Development

- Rapid multiplex PCR protocols* (PCR: 3 hr to <20 min; *now FBI-funded)
- Low-level DNA studies and kinship analysis
- Mixture interpretation research and training materials
- Variant STR allele characterization
- New STR loci & assays (STR 26plex, SNP testing) and kit concordance
- U.S. population data (24 autosomal STR loci)
- Y-chromosome characterization (mutation rates, deletions, nomenclature)

Training Materials

- AAFS, ISHI, ISFG & lab workshops on mixture interpretation, CE, etc.
- Third edition (3 volumes) of Forensic DNA Typing textbook

Selling since 1 Selling 16, 2011 5626

Current price: \$626

NIST SRM 2391c

Margaret Kline

Kline Becky Hill

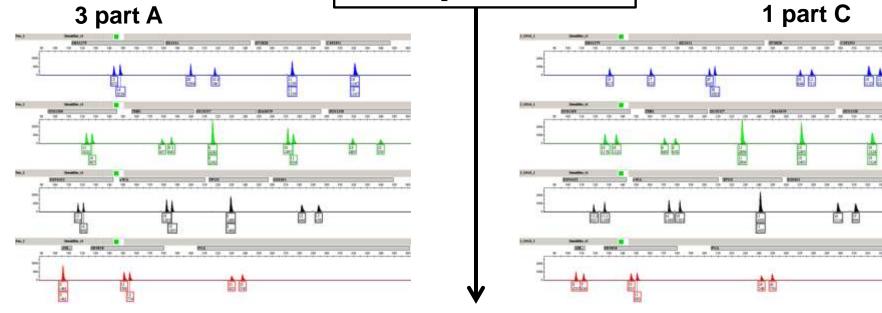
Produced with an entirely new set of genomic DNA samples

9947A & 9948 are NOT included.

https://www-s.nist.gov/srmors/view_detail.cfm?srm=2391C

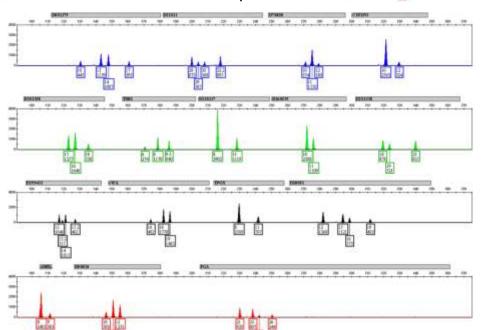
NIST Standard Reference Material (SRM) for Forensic DNA Testing

SRM 2391b (2003-2011)


SRM 2391c (2011-future)

- 48 autosomal STR loci with certified values
- 10 liquid genomic DNA components + 2 punches (cells on 903 paper)
- All single source samples
- 4 males + 6 females
- 9947A & 9948 included

- 23 autosomal STR loci and 17 Y-STRs certified
- 4 liquid genomic DNA components + 2 punches (cells on FTA & 903 paper)
- 5 single source + 1 mixture
- 3 males + 2 females (unique)
- All new samples
 - no 9947A or 9948


SRM 2391c to replace SRM 2391b and SRM 2395 (for Y-STRs)

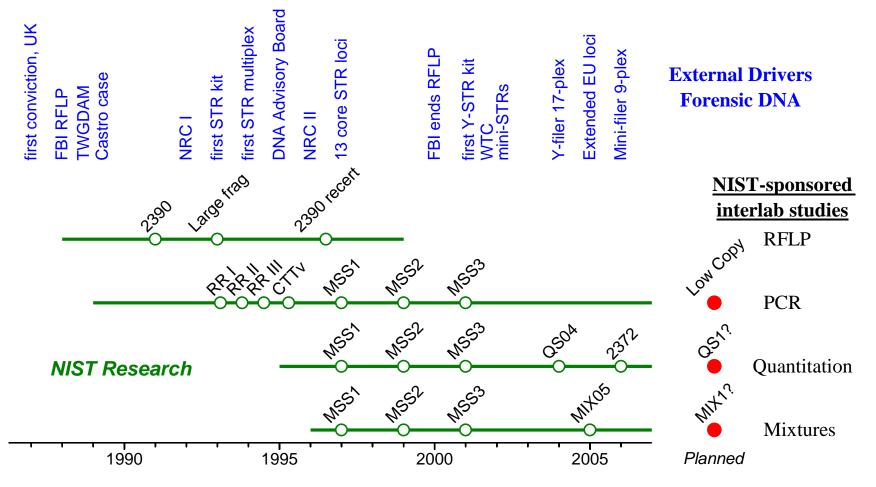
The certified ratio for Component D, the mass of Component A relative to that of Component C, is 3.1 ± 0.1

Component A / Component C.

STR Genotyping kits and primer mixes used at NIST to certify SRM 2391c

	Primer Mixes					
Life Technologies	Promega	Qiagen	NIST			
Identifiler	Powerplex 16	ESSplex	26plex			
Identifiler Plus	Powerplex 16 HS	IDplex	miniSTRs			
NGM	Powerplex ESX 17					
NGM SElect	Powerplex ESI 17					
COfiler	Powerplex ES					
Profiler	Powerplex S5					
Profiler Plus	Powerplex Y					
Profiler Plus ID	FFFL					
SGM Plus						
SEfiler	All results are concordant across all kits.					
MiniFiler						
Yfiler						

In total there is data for 51 autosomal STRs and 17 Y-STRs


NIST-Sponsored Interlab Studies

Margaret Kline

et Kline Dave Duewer

13 interlaboratory studies conducted over the past 20 years

Variant STR Allele Sequencing

Main Points:

- Article provides primer sequences (outside of all known kit primers) for 23 autosomal STRs & 17 Y-STRs and full protocol for gel separations and sequencing reactions
 - 111 normal and variant alleles sequenced (at 19 STR & 4 Y-STRs)
 - 17 null alleles sequenced (with impact on various STR kit primers)

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Short communication

STR sequence analysis for characterizing normal, variant, and null alleles

Margaret C. Kline*, Carolyn R. Hill, Amy E. Decker¹, John M. Butler

National Institute of Standards and Technology, 100 Bureau Drive, M/S 8312, Gaithersburg, MD 20899, USA

Presentations/Publications:

FSI Genetics article (Aug 2011) and numerous talks

Margaret Kline

STR Kit Concordance Testing

Becky Hill

Main Points:

- When different primer sets are utilized, there is a concern that allele dropout may occur due to primer binding site mutations that impact one set of primers but not another
- To test SRM 2391b/2391c (PCR-based DNA Profiling Standard) components with all new STR multiplex kits and verify results against certified reference values
- To gain a better understanding of primer binding site mutations that cause null alleles

If no primer binding site mutations

Set 1 Amplicons Set 2 Amplicons

If a primer binding site mutation exists

Presentations/Publications:

- Profiles in DNA article (Hill et al. 2010)
- ISFG 2011 and ISHI 2011 posters (Hill et al.)

Commercially Available STR Kits

Applied Biosystems (17)

- AmpFISTR Blue (1996)
- AmpFISTR Green I (1997)
- Profiler (1997)
- Profiler Plus (1997)
- COfiler (1998)
- SGM Plus (1999)
- Identifiler (2001)
- Profiler Plus ID (2001)
- SEfiler (2002)
- Yfiler (2004)
- MiniFiler (2007)
- SEfiler Plus (2007)
- Sinofiler (2008) China only
- Identifiler Direct (2009)
- NGM (2009)
- Identifiler Plus (2010)
- NGM SElect (2010)

Promega Corporation (15)

- PowerPlex 1.1 (1997)
- PowerPlex 1.2 (1998)
- PowerPlex 2.1 (1999)
- PowerPlex 16 (2000)
- PowerPlex ES (2002)
- PowerPlex Y (2003)
- PowerPlex S5 (2007)
- PowerPlex 16 HS (2009)
- PowerPlex ESX 16 (2009)
- PowerPlex ESX 17 (2009)
- PowerPlex ESI 16 (2009)
- PowerPlex ESI 17 (2009)
- PowerPlex 18D (2011)
- PowerPlex 21 (2012)
- PowerPlex ESI 17 Pro (2012)

Qiagen (2010)

Primarily selling kits in Europe Due to patent restrictions cannot sell in U.S.


- ESSplex
- ESSplex SE
- Decaplex SE
- IDplex
- Nonaplex ESS
- Hexaplex ESS
- HD (Chimera)
- Argus X-12
- Argus Y-12
- DIPlex (30 InDels)

~1/3 of all STR kits were released in the last three years

NIST Standard Sample Sets

- U.S. Population Samples (663 samples)
 - Previously studied with Identifiler, MiniFiler, Yfiler, PP16, PP
 ESX/ESI 17, NGM, miniSTRs, and 23plex (>200,000 allele calls)
 - 260 African Americans, 260 Caucasians, 140 Hispanics, and 3 Asians
- U.S. Father/Son pairs (800 samples)
 - Previously studied with Identifiler, MiniFiler, Yfiler, PP ESX/ESI 17, NGM, 23plex
 - ~100 fathers/100 sons for each group: African Americans, Caucasians, Hispanics, and Asians
- NIST SRM 2391b PCR DNA Profiling Standard (12 samples)
 - Components 1-10 (includes 9947A and 9948): well characterized
 - ABI 007 and K562

>1450 total samples

Characterizing New STR Loci

John Butler

Becky Hill

Main Points:

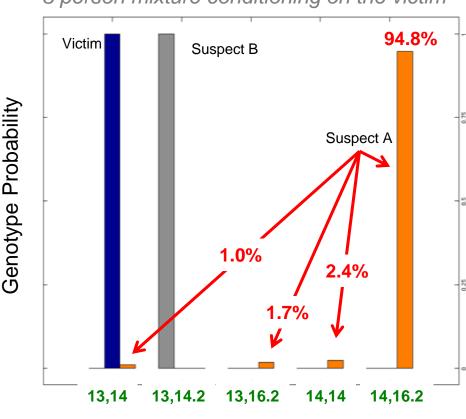
- In April 2011, the FBI announced plans to expand the core loci for the U.S. beyond the current 13 CODIS STRs
- Our group is collecting U.S. population data on new loci and characterizing them to aid understanding of various marker combinations
- We are collecting all available information from the literature on the 24 commonly used autosomal STR loci

Presentations/Publications:

- AAFS 2011 presentation
- Hill et al (2011) FSI Genetics 5(4): 269-275
- Hares (2012) Expanding the U.S. core loci... FSI Genetics 6(1): e52-e54
- Butler & Hill (2012) Forensic Sci Rev 24(1): 15-26

Loc	ci sorted on Pr Alleles	obability of Iden Genotypes	tity (P _i) valu Het.	es P _I value	24 STR Loci
STR Locus	Observed	Observed	(obs)	N = 938	in STR kits rank
SE33	53	292	0.9360	0.0069	ordered by their variability
Penta E*	20	114	0.8799	0.0177	ordered by their variability
D2S1338	13	68	0.8785	0.0219	Better for mixtures
D1S1656	15	92	0.8934	0.0220	
D18S51	21	91	0.8689	0.0256	(more alleles seen)
D12S391	23	110	0.8795	0.0257	
FGA	26	93	0.8742	0.0299	
D6S1043*	25	91	0.8627	0.0343 _	
Penta D*	16	71	0.8754	0.0356	
D21S11	25	81	0.8358	0.0410	_
D19S433	16	76	0.8124	0.0561	There are several loci
D8S1179	11	45	0.7878	0.0582	more polymorphic
vWA	11	38	0.8060	0.0622	than the current
D7S820	11	32	0.8070	0.0734	CODIS 13 STRs
TH01	8	24	0.7580	0.0784	00010 10 0113
D16S539	9	28	0.7825	0.0784	
D13S317	8	29	0.7655	0.0812	
D10S1248	12	39	0.7825	0.0837	
D2S441	14	41	0.7772	0.0855	
D3S1358	11	30	0.7569	0.0873	Better for kinship
D22S1045	11	42	0.7697	0.0933	•
CSF1PO	9	30	0.7537	0.1071	(low mutation rate)
D5S818	9	34	0.7164	0.1192	
TPOX	9	28	0.6983	0.1283 _	

True Allele Mixture Software Evaluation


Mike Coble

Main Points:

- Exploring the capabilities and limitations of a probabilistic genotyping approach
- Studying TrueAllele software with a number of different types of mixtures (including low-level and 3-4 person mixtures)
- Work being performed at NIST independently of Cybergenetics

D19S433 result from one replicate of 50,000 simulations

3 person mixture conditioning on the victim

Genotypes

Presentations/Publications:

- ISFG 2011 presentation
- ISHI 2011 mixture workshop

2011 Training Workshops

John Butler

Mike Coble

- AAFS (February 22, 2011)
 - Mixture Interpretation (with 6 other speakers)

- ISFG (August 30, 2011)
 - CE Fundamentals and Troubleshooting

- Int. Symp. Human Ident. (October 3, 2011)
 - Mixture Interpretation (with Boston University)

- Int. Symp. Human Ident. (October 6, 2011)
 - Troubleshooting Laboratory Systems (with Bruce McCord, FIU)

Slide handouts available at

http://www.cstl.nist.gov/strbase/training.htm

2012 Training Workshops

John Butler

Mike Coble

- New York/New Jersey DNA analysts (April 18, 2012)
 - Mixture Interpretation, STRs & CE, Y-STRs & mtDNA

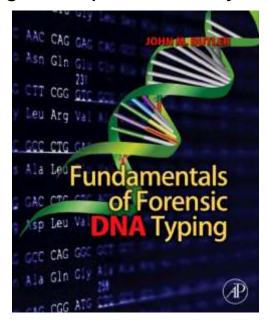
- Canadian Society of Forensic Science (May 8, 2012)
 - Mixture Interpretation & Statistics

- FBI Laboratory DNA Units (May 24, 2012)
 - NIST Research Projects

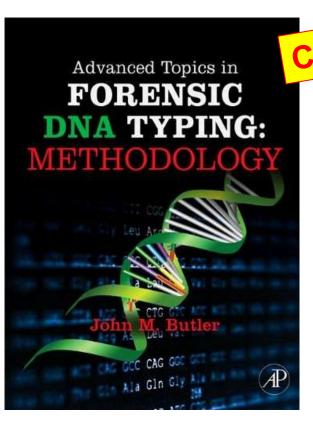
- Taiwan DNA analysts (June 6-7, 2012)
 - Mixture Interpretation, STRs & CE, Y-STRs & mtDNA

Slide handouts available at http://www.cstl.nist.gov/strbase/training.htm

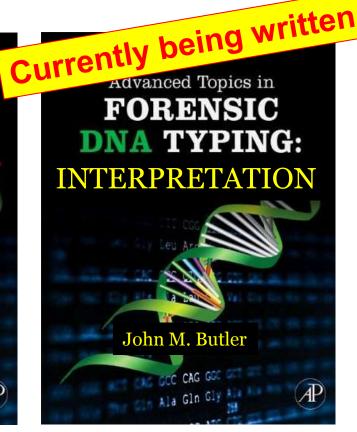
Forensic DNA Typing Textbook


3rd Edition is Three Volumes

Now part of my job at NIST (no royalties are received)


John Butler

For beginning students, general public, & lawyers


Sept 2009

~500 pages

August 2011

~700 pages

2013

~500 pages

Our FY2011 Group Productivity

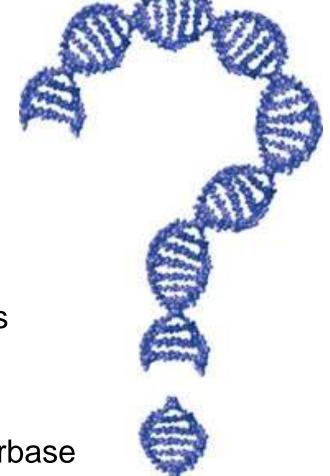
(Oct 2010 to Sept 2011)

- 21 publications
 - 20 articles + 1 book
- 77 presentations
 - 65 talks (58 invited) + 12 posters (all available on STRBase)
- 10 training workshops
 - Mixture interpretation (ISHI, AAFS, NFSTC, IN, HI, AZ, MI, Palm Beach, Houston)
 - Capillary electrophoresis (ISFG)
- 3 Standard Reference Materials (SRMs) completed
 - 2391c (forensic STRs), 2393 (HD), 2366 (CMV)
- 10 committee assignments
 - VA SAC, DOD DNA oversight, FBI new CODIS core loci, SWGDAM (mixture interpretation, rapid DNA, enhanced detection methods), NIST/NIJ evidence preservation TWG, JCTLM, NIJ DNA TWG, ATCC cell line authentication

Some Recent Publications from Our Group

See full listing at http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

- Butler, J.M. (2012) *Advanced Topics in Forensic DNA Typing: Methodology*. Elsevier Academic Press: San Diego.
- Butler, J.M. and Hill, C.R. (2012) Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. *Forensic Sci. Rev.* 24(1): 15-26.
- Coble, M.D., Kline, M.C., Butler, J.M. (2011) Metrology needs and NIST resources for the forensic DNA community. *Accred. Qual. Assur.* 16: 293-297.
- Coble, M.D. (2011) The identification of the Romanovs: can we (finally) put the controversies to rest? *Investigative Genetics* 2: 20.
- Hill, C.R., Duewer, D.L., Kline, M.C., Sprecher, C.J., McLaren, R.S., Rabbach, D.R., Krenke, B.E., Ensenberger, M.G., Fulmer, P.M., Stort, D.R., Butler, J.M. (2011) Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex® ESX 17 and ESI 17 Systems. Forensic Sci. Int. Genet. 5(4): 269-275.
- Hill, C.R., Kline, M.C., Duewer, D.L., Butler, J.M. (2011) Concordance testing comparing STR multiplex kits with a standard data set. *Forensic Sci. Int. Genet.:* Suppl. Ser. 3: e188-e189.
- Kline, M.C., Hill, C.R., Decker, A.E., Butler, J.M. (2011) STR sequence analysis for characterizing normal, variant, and null alleles. Forensic Sci. Int. Genet. 5(4): 329-332.
- Kline, M.C., Butts, E.L.R., Hill, C.R., Coble, M.D., Duewer, D.L., Butler, J.M. (2011) The new Standard Reference Material 2391c: PCR-based DNA profiling standard. *Forensic Sci. Int. Genet.: Suppl. Ser.* 3: e355-e356.


Acknowledgments and Contact Information

Acknowledgments: NIJ & FBI Funding; Applied Biosystems, Promega, and Qiagen for STR kits used in concordance studies

John Butler NIST Fellow Group Leader of Applied Genetics john.butler@nist.gov 301-975-4049

http://www.cstl.nist.gov/biotech/strbase

Our team publications and presentations are available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

SAVE THE DATE Foresics@NIST

Three day symposium on cutting edge forensic science research at NIST

2012

Date: November 28-30th, 2012

Time: 9:00 am to 5:00 pm

Location: NIST (Gaithersburg, Maryland)

For more information:

www.nist.gov/oles/forensics-2012.cfm

Note: registration is required

NIST/NRC Postdoc Program

- Current stipend (2011-2012) is \$65,600 per year
 - Currently a limit of 120 slots per year
 - Congressionally-mandated program for NIST
 - Maximum 2-year appointments
- Awardees must be U.S. citizens
- Awardees are chosen through a national competition administered by the National Research Council of the National Academy of Sciences.
 - Research opportunities include those in chemistry, physics, materials science, mathematics, computer sciences, and engineering.
- Two competitions per year
 - deadlines of February 1 and August 1

Any of the projects our group is doing are open to possibilities

Multiplex PCR Assay Development

RO#: 50.63.11.B5906 Adviser: Peter Vallone

http://www.nist.gov/iaao/postdoc.cfm

http://nrc58.nas.edu/RAPLab10/Opportunity/Program.aspx?LabCode=50