Capillary Electrophoresis in DNA Analysis STR Analysis NEAFS Workshop Mystic, CT September 29-30, 2004 Dr. John M. Butler Dr. Bruce R. McCord

Step in Protocol	AmpFISTR [®] kits	PowerPlex [®] STR kits (Promega Corporation)		
	(Applied Biosystems)			
Initial Incubation	95 °C for 11 minutes	95 °C for 11 minutes		
Thermal Cycling	28 cycles	<u>30 cycles</u> ª		
Denature	94 °C for 1 minute	94 °C for 30 seconds (cycle 1-10)		
		90 °C for 30 seconds (cycle 11-30)		
Anneal	59 °C for 1 minute	60 °C for 30 seconds		
Extend	72 °C for 1 minute	70 °C for 45 seconds		
Final Extension	60 °C for 45 minutes	60 °C for 30 minutes		
Final Soak	25 °C	4 °C		
	(until samples removed)	(until samples removed)		

Advantages of PCR

- Minute amounts of DNA template may be used from as little as a single cell.
- DNA degraded to fragments only a few hundred base pairs in length can serve as effective templates for amplification.
- Large numbers of copies of specific DNA sequences can be amplified simultaneously with multiplex PCR reactions.
- Contaminant DNA, such as fungal and bacterial sources, will not amplify because human-specific primers are used.
- Commercial kits are now available for easy PCR reaction setup and amplification.

Butler, J.M. (2001) Forensic DNA Typing, Chapter 4, p. 50, ©Academic Press

- Pre- and post-PCR sample processing areas should be physically separated.
- Equipment, such as pipettors, and reagents for setting up PCR should be kept separate from other lab supplies, especially those used for analysis of PCR products.
- Disposable gloves should be worn and changed frequently.
 Reactions may also be set up in a laminar flow hood, if
- Reactions may also be set up in a laminar now nood, in available.
- Aerosol-resistant pipet tips should be used and changed on every new sample to prevent cross-contamination during liquid transfers.
- Reagents should be carefully prepared to avoid the presence of any contaminating DNA or nucleases.
- Ultraviolet irradiation of laboratory PCR set-up space when the area is not in use and cleaning workspaces and instruments with isopropanol and/or 10% bleach solutions help to insure that extraneous DNA molecules are destroyed prior to DNA extraction or PCR set-up
 - autler, J.M. (2001) Forensic DNA Typing, Chapter 4, pp. 49-50, ©Academic Pres

Sequence Variation
 single nucleotide polymorphisms (SNPs)
 insertions/deletions
 <u>GCTAGTCGATGCTC(G/A)GCGTATGCTGTAGC</u>

Information on 13 CODIS STRs							
Locus Name	Chromosomal Location	Repeat Motif ISFG format	GenBank Accession	Allele in GenBank	Allele Range	Number of *	
CSF1PO	5q33.1	TAGA	X14720	12	5-16	20	
FGA	4q31.3	CTTT	M64982	21	12.2-51.2	80	
TH01	11p15.5	TCAT	D00269	9	3-14	20	
TPOX	2p25.3	GAAT	M68651	11	4-16	15	
VWA	12p13.31	[TCTG][TCTA]	M25858	18	10-25	28	
D3S1358	3p21.31	[TCTG][TCTA]	NT_005997	18	8-21	24	
D5S818	5q23.2	AGAT	G08446	11	7-18	15	
D7S820	7q21.11	GATA	G08616	12	5-16	30	
D8S1179	8q24.13	[TCTA][TCTG]	G08710	12	7-20	17	
D13S317	13q31.1	TATC	G09017	13	5-16	17	
D16S539	16q24.1	GATA	G07925	11	5-16	19	
D18S51	18q21.33	AGAA	L18333	13	7-39.2	51	
D21S11	21q21.1	Complex	AP000433	29	12-41.2	82	
Butler, J.M. (2)	Butler, <u>Forensic DNA Typing (2nd edition)</u> , Appendix I Butler, J.M. (2005) Forensic DNA Typing, 2 nd Edition. Table 5.2. @Elsevier Science/Academic Press						

Multiplex PCR Requires QC and Balancing of Many Primers (24 primers used in cat STR 12plex assay) 6FAM F53 C08 **B04** G11 (blue) 0.9 µM 0.9 µM 0.9 µM 1.4 µM VIC SRY FCA441 D09 F124 C12 Final (green) primer m 0.04 µM 0.6 µM 0.2 µM 0.6 µM 0.6 µM NED C09 F85 D06 (yellow) 1.4 µM 1.2 uM

OmniPop 150.4.2

- Published allele frequencies
 - from 97 populations containing all 13 CODIS loci
 - From 166 populations with 9 loci (Profiler Plus)
- From 64 publications
- Available from Brian Burritt (San Diego Police Dept) - (619) 531-2215
 - bburritt@pd.sandiego.gov

Forensic DNA Typing, 2nd Edition: Biology, Technology, and Genetics of STR Markers (John M. Butler, Elsevier Science/Academic Press, Jan 2005)

5 chapters on statistical issues

- · Basic Genetic Principles and Statistics
- STR Database Analyses
- Profile Frequency Estimates
- Approaches to Statistical Analysis of Mixtures
- Kinship and Paternity Testing

Examples are carefully worked through using the same U.S. population database to illustrate concepts

STR Biology

Stutter Products

- Peaks that show up primarily one repeat less than the true allele as a result of strand slippage during DNA synthesis
- Stutter is less pronounced with larger repeat unit sizes (dinucleotides > tri- > tetra- > penta-)
- Longer repeat regions generate more stutter
- Each successive stutter product is less intense (allele > repeat-1 > repeat-2)
- Stutter peaks make mixture analysis more difficult

Null Alleles

- Allele is present in the DNA sample but fails to be amplified due to a
 nucleotide change in a primer binding site
- Allele dropout is a problem because a heterozygous sample appears falsely as a homozygote
- Two PCR primer sets can yield different results on samples originating from the same source
- This phenomenon impacts DNA databases
- Large concordance studies are typically performed prior to use of new STR kits

/13 CODIS loci affected so far				
Locus	STR Kits/Assays Results Compared		Reference	
/WA	PP1.1 vs ProPlus	Loss of allele 19 with ProPlus ; fine with PP1.1	Kline et al. (1998)	
D5S818	PP16 vs ProPlus	Loss of alleles 10 and 11 with PP16 ; fine with ProPlus	Alves et al. (2003)	
D13S317	Identifiler vs miniplexes	Shift of alleles 10 and 11 due to deletion outside of miniplex assay	Butler et al. (2003), Drabek et al. (2004)	
D16S539	PP1.1 vs PP16 vs COfiler	Loss of alleles with PP1.1 ; fine with PP16 and COfiler	Nelson et al. (2002)	
D8S1179	PP16 vs ProPlus	Loss of alleles 15, 16, 17, and 18 with ProPlus; fine with PP16	Budowle et al. (2001)	
FGA	PP16 vs ProPlus	Loss of allele 22 with ProPlus ; fine with PP16	Budowle and Sprecher (2001)	
D18S51	SGM vs SGM Plus	Loss of alleles 17, 18, 19, and 20 with SGM Plus; fine with SGM	Clayton et al. (2004)	
CSF1PO	PP16 vs COfiler	Loss of allele 14 with COfiler; fine with PP16	Budowle et al. (2001)	
FH01	PP16 vs COfiler	Loss of allele 9 with COfiler; fine with PP16	Budowle et al. (2001)	
J21S11	PP16 vs ProPlus	Loss of allele 32.2 with PP16; fine with ProPlus	Budowle et al. (2001)	

Sept 29-30, 2004

	STR Me	asured Mutatio	n Rates http:/	/www.cstl.nist.go	v/biotech/strbase/n	nutation.htm
5	STR Locus	Maternal Meioses (%)	Paternal Meioses (%)	Either Parent	Total Mutations	Rate
	CSF1PO	70/179,353 (0.04)	727/504,342 (0.14)	303	1,100/683,695	0.16%
	FGA	134/238,378 (0.06)	1,481/473,924 (0.31)	495	2,110/712,302	0.30%
<u>.</u>	TH01	23/189,478 (0.01)	29/346,518 (0.008)	23	75/535,996	0.01%
<u> </u>	трох	16/299,186 (0.005)	43/328,067 (0.01)	24	83/627,253	0.01%
ore	VWA	133/400,560 (0.03)	907/646,851 (0.14)	628	1,668/1,047,411	0.16%
	D3S1358	37/244,484 (0.02)	429/336,208 (0.13)	266	732/580,692	0.13%
ы	D5S818	84/316,102 (0.03)	537/468,366 (0.11)	303	924/784,468	0.12%
<u></u>	D7S820	43/334,886 (0.01)	550/461,457 (0.12)	218	811/796,343	0.10%
8	D8S1179	54/237,235 (0.02)	396/264,350 (0.15)	225	675/501,585	0.13%
÷	D13S317	142/348,395 (0.04)	608/435,530 (0.14)	402	1,152/783,925	0.15%
	D16S539	77/300,742 (0.03)	350/317,146 (0.11)	256	683/617,888	0.11%
	D18S51	83/130,206 (0.06)	623/278,098 (0.22)	330	1,036/408,304	0.25%
	D21S11	284/258,795 (0.11)	454/306,198 (0.15)	423	1,161/564,993	0.21%
	Penta D	12/18,701 (0.06)	10/15,088 (0.07)	21	43/33,789	0.13%
	Penta E	22/39,121 (0.06)	58/44,152 (0.13)	55	135/83,273	0.16%
	D2S1338	2/25,271 (0.008)	61/81,960 (0.07)	31	94/107,231	0.09%
	D19S433	22/28,027 (0.08)	16/38,983 (0.04)	37	75/67,010	0.11%
	F13A01	1/10,474 (0.01)	37/65,347 (0.06)	3	41/75,821	0.05%
	FES/FPS	3/18,918 (0.02)	79/149,028 (0.05)	None reported	82/167,946	0.05%
	F13B	2/13,157 (0.02)	8/27,183 (0.03)	1	11/40,340	0.03%
	LPL	0/8,821 (<0.01)	9/16,943 (0.05) 220/51 610 (0.64)	4 None reported	13/25,764	0.05%
5	233 (ACTBP2) "D	ata used with permission fro	m American Association of	Blood Banks (AAB	330r51,940 B) 2002 Annual Repor	0.04%) t.

Summary of STR Mutations

- Mutations happen and need to be considered
- Usually 1 in ~1000 meioses
- Paternal normally higher than maternal
- VWA, FGA, and D18S51 have highest levels
- TH01, TPOX, and D16S539 have lowest levels

Mutations impact paternity testing and missing persons investigations but not forensic direct evidence-suspect matches...

Advantages for STR Markers

- Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material
- Multiplex amplification with fluorescence detection enables high power of discrimination in a single test
- · Commercially available in an easy to use kit format
- Uniform set of core STR loci provide capability for national and international sharing of criminal DNA profiles

