Capillary Electrophoresis in DNA Analysis

Real-time PCR and miniSTRs

NEAFS Workshop Mystic, CT September 29-30, 2004 Dr. John M. Butler Dr. Bruce R. McCord

NIST

National Institute of Standards and Technology Technology Administration, U.S. Department of Comme

Why is Accurate DNA Quantitation Important in Forensic DNA Testing?

- · Limited amount of DNA available
 - Usually cannot perform multiple tests for quantity
 - Want to preserve DNA for STR testing
- Optimal signal from multiplex STR reactions is only in a tight concentration range (usually 0.5-2 ng)
 - Too much DNA leads to split peaks, off-scale peaks, and bleed through between dye colors
 - Too little DNA leads to loss of loci or alleles due to stochastic effects

Introduction

- What is rtPCR or qPCR?
- · How does it work?
- How does it compare to traditional methods of Human DNA quantitation?
- What techniques are available?
- · What systems are available?

History RtPCR is a very recently developed technique - Developed by Higuchi in 1993 - Used a modified thermal cycler with a UV detector and a CCD camera - Ethidium bromide was used as intercalating reporter As [dsDNA] increased fluorescence increased Higuchi, R.; Fockler, C.; Dollinger, G.; Watson, R. "Kinetic PCR analysis: real-time monitoring of DNA amplification reactions" Biotechnology (N Y). 1993 Sep;11(9):1026-30

PCR amplification • Theoretically the quantity of PCR template T doubles with each cycle. • After 2 cycles the quantity of product is 2T • After N cycles the quantity of product is $P = (2)^n T$ • Thus there is a exponential relationship between the original quantity of product and the amount of template

Quantitation using C_t

- The log of DNA template concentration vs $C_{\rm t}$ is plotted using a series of stds yielding a calibration curve
- The unknown is then run and the number of cycles required to reach threshold, C_t is compared to the calibration curve.

Detection Methods

- Fluorescent intercalating dye SYBR Green
 Fluorescence increases with concentration of dsDNA
- Taqman probes
 - Fluorescence increases as quenched probe is digested
- Molecular beacons
 - Fluorescence increases as quenched probe hybridizes to template

Single vs Multilocus Targets

- SYBR Green Multilocus Probe
 - Alu inserts occur at multiple locations throughout the genome sensitive
 - If no sample, amplification of contaminants occurs at high cycle #
 Syber green requires no special kit –Inexpensive

 - Probes (Taqman, Mol. beacons)
 - Single location in genome
 - an internal std. is used to check for amplification and correct for changes in efficiency
 - Lower sensitivity due to noise at low copy number
- Choice: Sensitivity (SYBR green) vs Internal Standard Precision (probes)

Big issue – sensitivity and dyr	namic range
Quantiblot-ECL 40 pg - 2.0 ng ACES 2.0 40 pg - 4.0 ng No longer available	
(ACES tended to work better on degraded DNA) Real Time PCR 1.0 pg - 16 ng	
RTPCR has lower detection limit and larger dynamic range	

	Reference	R	Ti-PCR	Quan	Quantiblot	
1	5	5.38		6.25		
2	1.25	1.14		0.56	0.56	
3	0.3125	0.29	0.29		0.56	
4	0.078125	0.08	0.08		0.12	
5	5	4.92	4.92		8.75	
6	1.25	1.32	1.32		0.63	
7	0.3125	0.30		0.81		
8	0.078125	0.09		0.23		
bI	ration stud	ies in	our lab v	with expe	rimental p	rimers
bı	sample	ies in	our lab \ rtPCR	slot blot	Tho1 Allele	rimers
bı	sample blood on stic	ies in **	our lab v rtPCR 0.32 0.40	slot blot 0.50 0.50	Tho1 Allele 1880 1890	rimers
bı	sample blood on stic blood on met blood on conce	ies in k al	Our lab V rtPCR 0.32 0.40 0.40	vith expe slot blot 0.50 0.50 0.50	rimental p Tho1 Allele 1880 1890 1860	rimers
bı	ration stud sample blood on stic blood on met blood on conce blood on leav	ies in k al rete es	Our lab V rtPCR 0.32 0.40 0.40 0.08	vith expe slot blot 0.50 0.50 0.50 0.20	Tho1 Allele 1880 1890 1860 1540	rimers
	ration stud sample blood on stic blood on conce blood on conce blood on leav blood on cardb	ies in k al rete es oard	our lab v rtPCR 0.32 0.40 0.40 0.08 0.27	vith expe slot blot 0.50 0.50 0.20 0.24	rimental p Tho1 Allele 1880 1890 1860 1540 1450	rimers
	ration stud sample blood on stic blood on met blood on conce blood on cardb blood on cardb blood on core	ies in k al rete es oard th	our lab v rtPCR 0.32 0.40 0.40 0.08 0.27 0.04	vith expe slot blot 0.50 0.50 0.20 0.24 0.05	rimental p Tho1 Allele 1880 1890 1860 1540 1450 577	rimers

Real-Time PCR Efforts

- Marie Allen nuclear and mtDNA assay (BioTechniques 2002, 33(2): 402-411)
- Eric Buel Alu system (JFS 2003, 48(5):936-944)
- Centre for Forensic Sciences nuclear; TH01 flanking region (JFS 2003, 48(5):1041-1046)
- John Hartmann Alu system (SWGDAM Jan 2003)
- CA-DOJ TH01 assay (NIJ DNA Grantees June 2003)
- SYBR Green assay human-specific with right PCR
- Quantifiler kit (ABI) separate nuclear and Y assays

NIST Lessons Learned from Real Time-PCR Assays

- We are using ABI 7000 (some work also with Roche LightCycler)
- Results are RELATIVE to standards used
- Single source and mixed source samples with same UV concentrations differ with RT-PCR assays
- Need to keep instrument clean to avoid background fluorescence problems
- Assay reagent costs:
 - Quantifiler: \$2.46/sample (only permits 2 µL/sample)
 - SYBR Green: \$0.80/sample (up to 10 µL/sample)
 - QuantiBlot: \$0.54/sample (5 µL/sample)

	Joing	parison with	th A ₂₆₀ an	d Quanti	blot kit				
		A	088	Quan	tifiler Hur	nan Kit	Qu	uantifiler Y	Kit
Sample	Sex	Result (ng/µL)	Result (ng/µL)	Result (ng/jiL)	% Diff. from A ₂₉₀	% Diff. from QB	Result (ng/µL)	% Diff. from A ₂₆₀	% Diff from QB
1	м	17.5	20	6.69	61.7	66.6	10.13	41.9	49.4
2	м	15.4	20	14.3	7.1	28.5	16.78	9.0	16.1
3	м	13.9	30	15.48	11.4	48.4	14.30	2.9	52.3
4	М	11.4	The diff	ferent metho	ds produced	l similar quar	tification r	esults.	37.8
5	М	10.3	Table 6	-11 Avera	ge differenc	es from A ₂₆₀	and Quant	iblot kit	45.0
6	м	13.9		Average Difference (%)					32.2
			HI		Quantifi	ler Human Kit	Quant	ifiler Y Kit	

Acknowledgements

- · Jan Nicklas and Eric Buel Vermont Crime Laboratory
- Jiri Drabek
- Denise Chung, Kerry Opel
- Nancy Tatarek
- John Butler, Yin Shen
- Major support provided by
- The National Institute of Justice
- The OU Provost's Undergraduate Research Fund
- Ohio University Research Incentive Fund

Chemistry & Blochamistry

Degraded DNA
1. Fragmentation due to the environment
2. The presence of PCR inhibitors
Result
1. Poor amplification efficiency
2. Peak imbalance and allele dropout

Current Miniplex Loci and reduction in size relative to ABI kits					
Dye Label:	Blue	Green	Yellow		
Miniplex 1	TH01	CSF1P0	ΤΡΟΧ		
-	-105	-191	-148		
Miniplex 2	D5S818	D8S1179	D16S539		
-	-53	-37	-152		
Miniplex 3	FGA	D21S11	D7S820		
-	- 71	-33	-117		
Miniplex 4	vWA	D18S51	D13S317		
-	-64	-151	-105		
Miniplex 5	Penta D	Penta E	D2S1338		
	-282	-299	-198		

Samples from the Anthropological Research Facility						
Primer Set	Samples tested	Full Profile	Partial Profile			
Miniplex 2	25	23 (92%)	2 (8%)			
Miniplex 4	25	22 (88%)	3 (12%)			
Big Miniplex	25	6 (24%)	19 (76%)			
Miniplex 1		20 (80%)	5 (20%)			
Miniplex 3		7 (28%)	18 (72%)			
PowerPlex 16	25	3 (12%)	22 (88%)			
San	nples from the Franklin (County Coroner's	Office			
Primer Set	Samples tested	Full Profile	Partial Profile			
Miniplex 2	6	6 (100%)	0			
Miniplex 4	6	6 (100%)	0			
Big Miniplex	6	3 50%)	3 (50%)			
Miniplex 1		5 (83%)	1 (17%)			
Miniplex 3		3 (50%)	3 (50%)			
PowerPlex 16	6	2 (33%)	4 (67%)			

Drabek, J., Chung, D.T., Butler, J.M., McCord, B.R. (2004) Concordance study between miniplex STR assays and a commercial STR typing kit, J. Forensic Sci. 49(4): 859-860.

- 532 U.S. population samples (Caucasians, African Americans, and Hispanics) examined with four miniplexes (including all CODIS loci except D3S1358)
- Results compared to Identifiler STR kit (6,384 genotypes compared)
- 15 discrepancies (0.23%) most of which occur in 2 loci (D13S317 and VWA) and involve deletions between the two primer sites
- Representative samples from each discrepant locus have been sequenced to locate the polymorphic nucleotides causing the allele dropout

14,19

WA

15

AA

19,19

14,19

primer binding site mutation

	Z179305: D13S317 TGTC deletion
Overviev	Summary Cut Map Find Show Chromatograms Help Insert Help Reposition
D13S317genbank	
B01_20*1.A81	TTACARATACATTATCTATCTATCTATCTATCTATCTATC
255 frag bases & 85 consensus bases selected at consensus	1220 1230 1240 1250 1260 1270 1280 1290 1300 TTACAMAIR AND INTEGRATING AND
position 228	
	401_10*1.481 Fragment bases #228-312
+→ CTATCT	T AT CT AT CAAT CAT C
+ CTATC	B01_20*1.4B1 Fragment bases #228-312 TATCTATCTATCTATCTATCTATCTATCTATCTATCAATCATC
	สากสารระบบ (1997) สากสารระบบ (1997) สามารถ (1997) สามารถ (1997) สามารถ (1997) (1997)
	VATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

NEAFS CE-DNA Workshop (Butler and McCord)

STR Locus	Sequence Motif	Allele Range	Size Range (bp)	Observed Heterozygosit
D1S1677	(GGAA) _n	9-18	81-117	0.75
D2S441	(TCTA) _n	9-17	78-110	0.76
D4S2364	(GAAT)(GGAT)(GAAT) _n	8-12	67-83	0.53
D10S1248	(GGAA) _n	10-20	83-123	0.78
D14S1434	(GATA) _n (GACA) _n	13-20	70-98	0.68
D22S1045	(TAA) _n	5-16	76-109	0.77