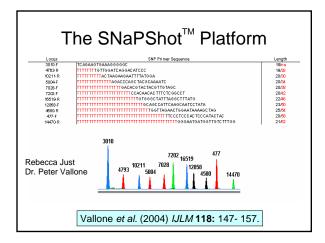


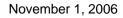
SNPs for Forensic Discrimination • 59 SNPs – that met our criteria (neutral, shared, non-redundant). 49 – Protein coding (silent) 8 – Control Region (outside HV1/2) 1 – Non-coding spacer region 1 – 16S rRNA* * 3010 G-A

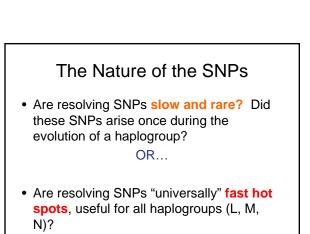
Α	в	с	D	E	F	G	н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	468
4580	3915	4580	6260	9380	10211	4688	1137
4793	5004	5250	9548	9899	10394	6293	1279
5004	6776	11719	9635	11914	10685	7891	1329
7028	8592	12438	11485	15067	11377	11533	1430
7202	10394	12810	11914	16519	14470	12007	1651
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	К1

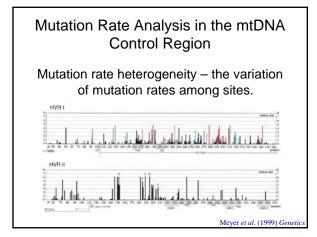


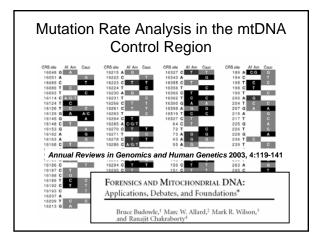
$- \wedge$		1					
	В	С	D	E	F	G	н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	1279
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
\setminus 1							
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	K1




\wedge					\sim		
	В	С	D	E	/ F \	G	н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	1279
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				16519	
н	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3 H4	V1 H1 H2 H3	J1 J3 T1	K1







Α	в	с	D	E	F	G	н
477	477	72	482	4808	64	3826	64
3010	3010	513	5198	5147	4745	3834	4688
4580	3915	4580	6260	9380	10211	4688	11377
4793	5004	5250	9548	9899	10394	6293	12795
5004	6776	11719	9635	11914	10685	7891	13293
7028	8592	12438	11485	15067	11377	11533	14305
7202	10394	12810	11914	16519	14470	12007	16519
10211	10754	14770	15355		14560	12795	
12858	11864	15833	15884		16390	15043	
14470	15340	15884	16368		14869	16390	
16519	16519	16519				(16519)	
H1	H2 H3 H6	V1 H5	J1 J2 K2 K3	J4 T2 T3	V1 H1 H2 H3	J1 J3 T1	K1

Mutation Rate Analysis in the mtDNA Coding Region

Previous Assumptions (I)

Adam Eyre-Walker *et al.* (1999) *Proc. R. Soc. Lond B.* Using partial DNA sequences of the human mtDNA genome (filled with errors), this group observed a significant amount of recurrent mutations (homoplasy) in their data.

Conclusion – Recombination! (between paternal and maternal mtDNA)

Mutation Rate Analysis in the mtDNA Coding Region

- Eyre-Walker *et al.* assume mutation rate *Homo*geneity...
- "There is no evidence of variation in the mutation rate."
- (Mostly discredited for their poor data choice and method of calculating LD)

Mutation Rate Analysis in the mtDNA Coding Region

Previous Assumptions (II)

Am. J. Hum. Genet. 70:1152-1171, 2002

Reduced-Median-Network Analysis of Complete Mitochondrial DNA Coding-Region Sequences for the Major African, Asian, and European Haplogroups

Corinna Herrnstadt,¹ Joanna L. Elson,² Eoin Fahy,¹ Gwen Preston,¹ Douglass M. Turnbull,² Christen Anderson,¹ Soumitra S. Chosh,¹ Jerrold M. Olefsky,² M. Flint Beal,^{4,4} Robert E. Davis,¹⁴ and Neil Howell^{1,2}

Mutation Rate Analysis in the mtDNA Coding Region

Table 2

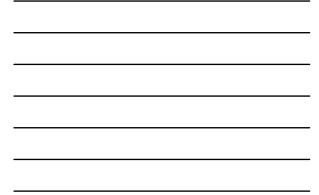
							No. of	POLYM	ORPHB	MS IN 1	lanco	ROUP						
NUCLEOTER POSITION*	A (25)	B (18)	C (13)	D (9)	E (3)	H (226)	(14)	J (33)	(47)	L1 (13)	1.2 (23)	L3 (20)	M (1)	T (46)	U (42)	V (8)	W (\$)	(11
593 709				1				1	2									
709		2				3			9	7		1		46	1		8	
750	2.5	18	13	9	3	218	14	33	47	13	2.3	17	1	46	42	8	8	11
769										13	23							
930	1										1			16				
1018										13	2.3							
1438	2.5	18	13	9	3	208	12	33	47	6	2.3	20	1	46	42	8	8	11
1598	2						1							1				
1719						2	14	1						1				11
1811						1			4.6						15			

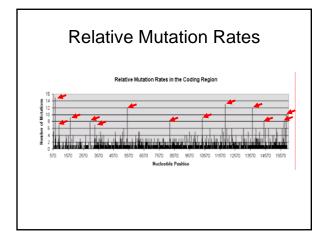
"One important result to emerge from these studies is the <u>relatively large number of sites</u> at which homoplasic events have occurred."

(see our Table 2)

Mutation Rate Analysis in the mtDNA Coding Region

Letters to the Editor

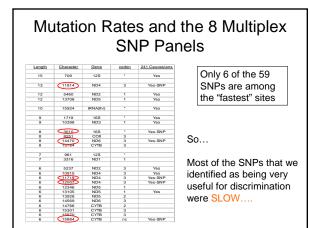

Am. J. Hum. Genet. 72:1341-1346, 2003


To Trust or Not to Trust an Idiosyncratic Mitochondrial Data Set

 "Homoplasy in the coding region is much less than in the control region and may have only a few hot spots (see, e.g., table 2 of Herrnstadt et al. [2002])"

Table 2																		
Polymorphism	is That	Are As	ociated	l with	More	than One	Haplo	group										
							No. or	POLYS	ORPHB	MS IN 1	lano	ROUP						
NUCLEOTER POSITION ⁴	A (25)	B (18)	C (13)	D (9)	E (3)	H (226)	1 (14)	J (33)	K (47)	L1 (13)	1.2 (23)	L3 (20)	M (1)	T (46)	U (42)	V (8)	W (8)	(11
593				1				1	2									
709	25	18	13	9	2	218	14	33	47	13	23	17	1	46	42	8	8	11
769						210				13	23							
930 1018	1									13	23			16				
1438	2.5	18	13	. 9	3	208	12	33	47	6	23	20	1	46	42	8	8	11
1598 1719	2						.1							1				
1719 1811						2	14	1	46					1	15			11

Our Results									
Analysis of 64	46 codi	na reaic	n aeno	mes					
,	Parsi		0	11					
Data Set (# genomes)	Tree Length	α estimation	Tree Length	α estimation					
Ingman HV1 (53)	144	0.2091	144	0.2081					
Ingman Control Region (53)	273	0.0038	281	0.0036					
Ingman Coding Region (53)	588	0.0075	588	0.0074					
Ingman Full Data (53)	873	0.0050	876	0.0067					
	2352	0.0086	2353	0.0083					



The Mutation Rate Spectrum

- How does the estimated mutation rate spectrum compare to the forensically informative SNPs?
- Are all of the forensic SNPs mutational "hot-spots?"

A Case	Example	
Skeletal remains - "H1	" in the HV1/HV2 region.	
Thought to belong to c	one of two individuals	
(Smith	or Jones)	
Family references for Smit	h and Jones were obtained.	
Smith Family	Jones Family	
263 A-G	263 A-G	
315.1 C	315.1 C	

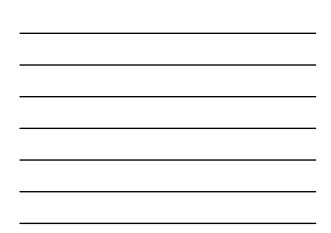
A Case Example

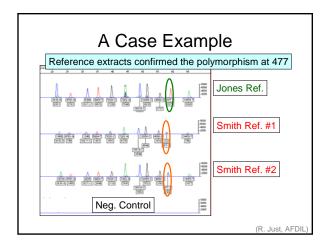
Skeletal remains - "H1" in the HV1/HV2 region. Thought to belong to one of two individuals...

(Smith or Jones)

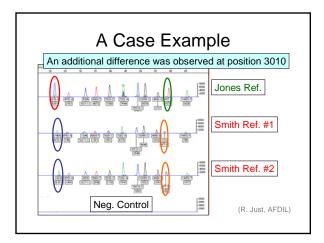
Remains tested for VR region: 477 T-C and 16519 T-C

Smith Family 263 A-G 315.1 C 477 T-C 16519 T-C Jones Family 263 A-G 315.1 C 16519 T-C

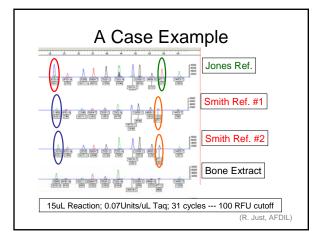

Question....

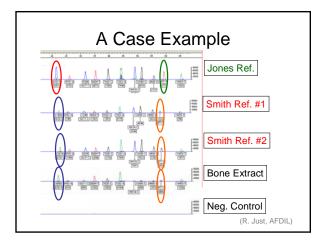

Can the Smith Family be excluded as a possible family reference for the skeletal remains?

Smith Family 263 A-G 315.1 C 477 T-C 16519 T-C Jones Family 263 A-G 315.1 C 16519 T-C


http://www.cstl.nist.gov/biotech/strbase/training.htm

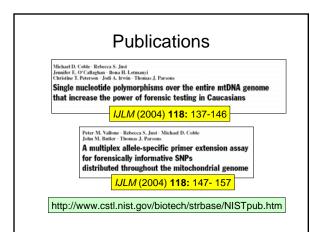
	tion
N	0!
Only one mutation different	s between the two families
Smith Family	Jones Family
263 A-G	263 A-G
315.1 C 477 T-C	315.1 C
16519 T-C	16519 T-C
INCON	CLUSIVE







Smith Family	Skeletal Remains	Jones Family
263 A-G	263 A-G	263 A-G
315.1 C	315.1 C	315.1 C
477 T-C	477 T-C	16519 T-C
3010 A-G	3010 A-G	
16519 T-C	16519 T-C	
	·····	



Summary

- Purpose Maximize Discrimination.
- A supplement to current HV1/HV2 testing.
- When the Forensic Scientist encounters a common type, select the most discriminating SNP panel.

Summary

- AFDIL focused on sites that are not associated with the potential for phenotypic change.
- Most of the informative sites are rare, slow polymorphisms that are useful for discrimination in a particular common type.
- A few SNP sites may be useful for resolving common HV1/HV2 types from various backgrounds.
- Evaluation of non-synonymous sites that are not associated with diseases may also be useful for forensic discrimination... site-by-site evaluation (e.g. 3010 is very useful among HgH.

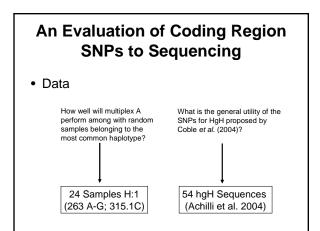
Efforts with Coding Region Sequencing Applied to Human mtDNA Testing

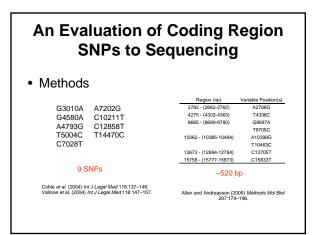
- Tzen et al. (2001) Forensic Sci. Int. 120:204-209

 Portions of mtATP6, mtATP8 among 119 Chinese individuals
- Andreasson et al. (2002) Biotechniques 32:124-133
 Highly variable regions of mtDB among 190 Swedish individuals
- Lee et al. (2002) Int. J. Legal Med. 116:74-78
 mtCyt B among 98 Korean individuals
- Lutz-Bonengel et al. (2003) Int. J. Legal Med. 117:133-142
 mtATP6, mtATP8, mtND4 among 109 German individuals
- Poetsch et al. (2003) Mitochondrion 3:133-137 – portions of tRNA K, ATP6, ATP8 among 180 German individuals
- Coble et al. (2004) Int. J. Legal Med., 118:137-146
 241 complete mtGenomes among 18 common Cauc. HV1/HV2 types

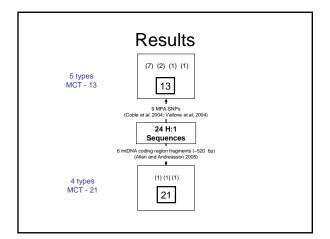
Criticisms of Synonymous SNPs for Discrimination

Int J Legal Med (2005) 119: 314–315 DOI 10.1007/s00414-005-0543-y LETTER TO THE EDITOR

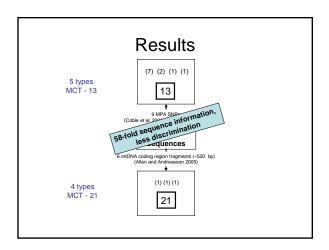

B. Budowle+U. Gylleasten+R. Chakraborty+M. Allen Forensic analysis of the mitochondrial coding region and association to disease

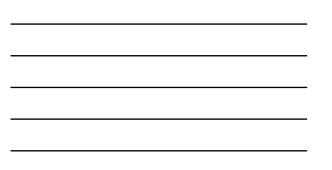

Budowle et al. (2005)

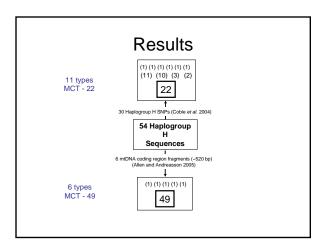
- [Coble and Vallone] have proposed that forensic analyses of the coding region [should] be restricted to synonymous substitutions [and] suggest that sequencing strategies for forensic analyses of the coding region of the mtDNA genome should be avoided [and] that only SNPbased systems should be employed.
- We disagree with this proposition [would] severely hamper the use of mtDNA in forensic testing.

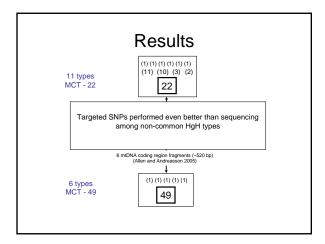

Budowle et al. (2005)

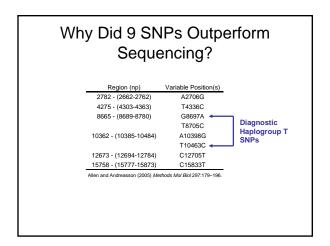
 "by limiting the analysis only to synonymous polymorphisms that cannot have any phenotypic effect, a large part of the polymorphic positions (and thus forensically informative) would be excluded."

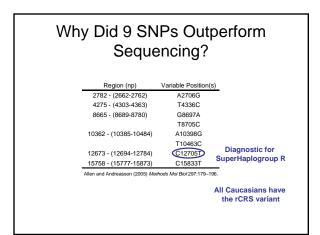


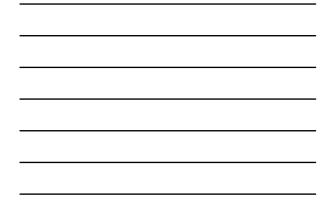


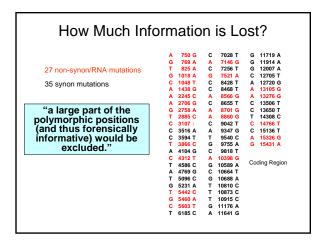


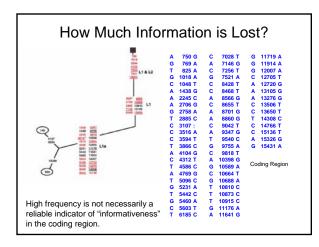






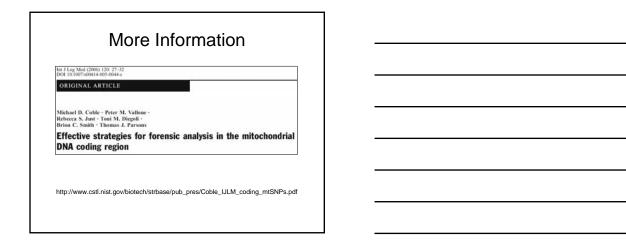


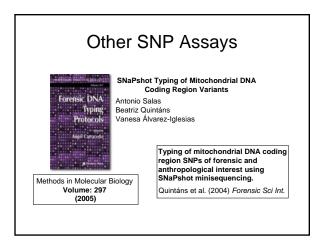




How Much	••••				0.	•	.0	- `		•••
	с	64	т	А				7028		G 11719 A
African-derived	A	93	G		769			7146		G 11914 A
Sequence	C		T		825 1018			7256		G 12007 A C 12705 T
	G	185	G		1018			7521 8428		A 12720 G
Japlagroup I Oot	Â		G		1438			8468		A 13105 G
Haplogroup L0a1	Ť		č		2245			8566		A 13276 G
	G		Ă		2706			8655		C 13506 T
'Hausa" (Ingman et al. 2000)	Ā	263	G	G	2758	Â	Ā	8701	G	C 13650 T
······································	С	522	:	Ť	2885	С	Α	8860	G	T 14308 C
	А		:		3107		С	9042		C 14766 T
		16129			3516		Α			C 15136 T
		16148			3594		т			A 15326 G
		16168			3866		G	9755		G 15431 A
		16172			4104		c	9818		
		16187 16188			4312 4586			10398		
		16188			4586			10589		
		16223			5096			10688		
		16230			5231			10810		
		16311			5442			10873		
	ċ	16320	Ť		5460		Ť	10915	ċ	
	т	16362	с	С	5603	т	G	11176	A	
	т	16519	С	т	6185	С	Α	11641	G	

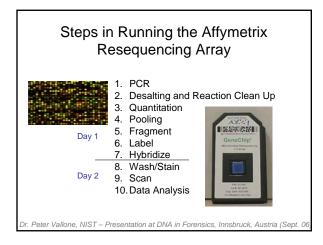
Conclusions

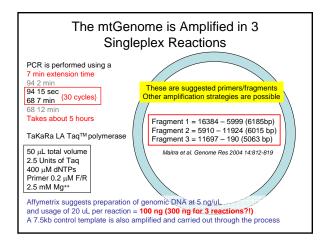

- A selected SNP method out-performed a random sequencing protocol for increased discrimination.
- This method was developed to avoid additional sequencing, as often, the casework at AFDIL involves challenging cases where the quantity and quality of extract would prohibit an extensive post-HV1/HV2 sequencing strategy.


Conclusions

- Budowle *et al.* (2005) make several valid points about the usefulness of non-synonymous sites for discrimination, and we have made a careful evaluation about the potential use of these sites.
- However, many cases processed by AFDIL are publicly visible and involves large segments of the general population. The US military now has a policy of compulsory submission of a blood sample retained solely for the purposes of DNA identification, which is necessary in the face of military casualty.

Conclusions


- A conservative approach was developed, and this may or may not meet the needs of other forensic laboratories
- Some countries, such as Germany, have strict regulations the use of forensic testing that may reveal medical information... this has resulted in the call for disqualification of certain markers (e.g. X chromosome – see Szibor et al. 2005 IJLM).
- Need to weigh the costs and benefits for developing effective strategies to increase mtDNA discrimination.



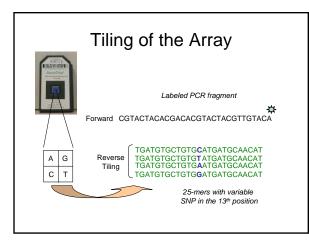
Emerging mtDNA technologies

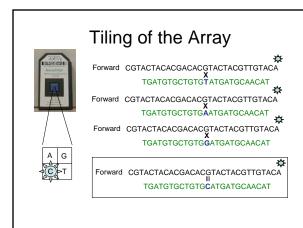
mtDNA micro-chip technology

Post PCF	R Steps	
Presence of amplicon confirmed on agarose gel	15 min	, we the derivative set on the structure distribution of the γ
Amplicons are desalted (salts,PCR primers) Millipore Montage screen plate (96 well)	30 min	[
The 3 amplicons are quantitated (UV, pico green)	30 min	
Amplicons are pooled in an equimolar ratio and fragmented (enzymatically) down to ~200 bp	30 min	
Labeled (with biotin)	2 hours	1111
Sample loaded onto GeneChip and incubated at 45°C	16 hours	
Arrays are washed and fluorescently labeled on fluidics station	(~1 hour)	

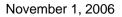
GeneChip Version 2.0

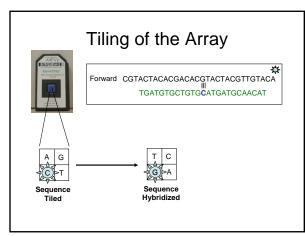
Developed for mutation detection - disease association studies

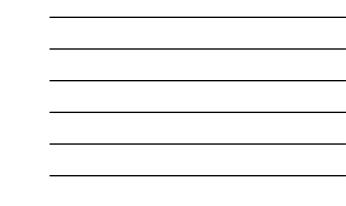

Version 2.0 interrogates the entire ~16kb mitchondrial genome (ver 1.0 coding region only)

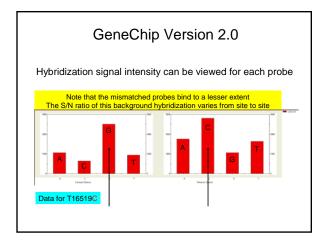

Contains common variants in HVI and HVII regions Information from FBI database (~500 types) www.fbi.gov/hg/lab/isc/backtissu/april2002/miller1.htm HV-Types observed at least twice in the database Plus 250 singletons

Array is tiled with 25 nt oligomers; the center $(13^{\mbox{th}})$ base interrogates the sequence

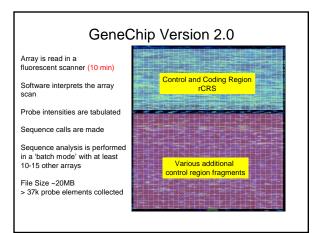

Both forward and reverse strands of the sequence are probed


Version 1.0 Cutler et al. Genome Res 2001 11:1913-1925 Version 2.0 Zhou et al. J Mol Diagn 2006 8: 476-482





http://www.cstl.nist.gov/biotech/strbase/training.htm



How are Base Calls Made?

Using the Affymetrix GSEQ software fluorescence cell intensity is evaluated (base calling algorithms)

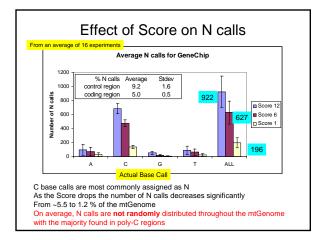
Array data should be analyzed in a batch (> 10 samples)

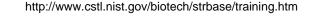
A 'Score' value allows for varying degrees of stringency

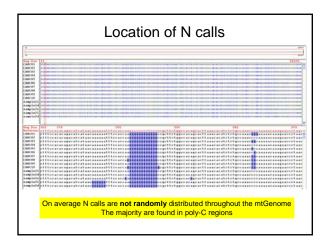
The Score parameter ranges between 1 and 12 12 = conservative (more N calls) 1 = liberal (less N calls, but possible miscalls)

An N call is an ambiguous base call (A,G,C,T)

Data Analysis

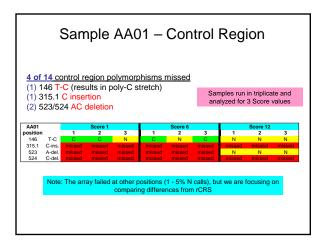

Calls made using Affymetrix GSEQ software Fluorescent probe intensities are evaluated (base calling algorithms)

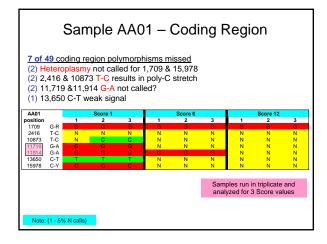

Scores of 1, 6, and 12 were used Score = a base calling parameter allows for varying degrees of stringency 12 = conservative (more N calls) 1 = liberal (less N calls, but possible miscalls)


An N call is an ambiguous base call (A,G,C,T, no call)

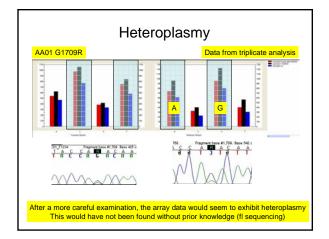
Sequence files were exported (composite of all calls made on the array)

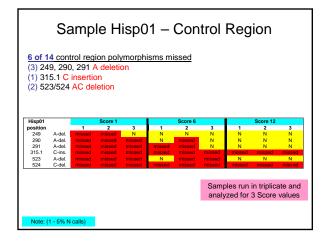
Data summary will focus on the expected sequence differences from rCRS as determines by fluorescent sequencing

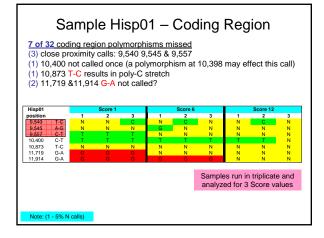


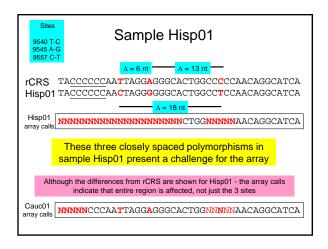


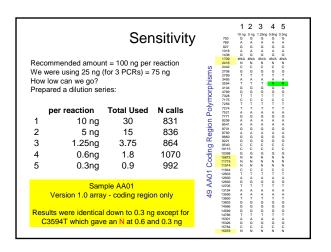
Samples From our set of NIST U.S. population samples		
AA01	63 differences from rCRS 14 in control region 49 in coding region Heteroplasmy at G1709R & C15978Y	
Hisp01	46 differences from rC 14 in control region 32 in coding region	RS Full genome sequencing was performed for all 12 samples AA01 and Hisp01 at AFDIL Cauc 01-10 at NIST
Cauc 01- 10	Contain the identical control region sequence (16024-577)	











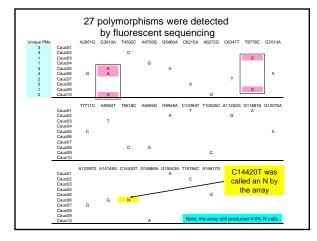
Sensitivity

If the amplicons were detected and quantitated then a result was obtained on the GeneChip array

Using the 3 amplicon approach we were able to obtain results using 0.3 ng (0.9 ng total) of genomic DNA

Additional experiments will be needed to ascertain how this approach will work on degraded (casework) samples

- 'Degraded' primer sets?
- Focus on a subset of the mtGenome?
- Mito whole genome amplification?


Resolving a Common HV-Type

Ten samples (haplogroup H:1) sharing the most common HV-type found in Caucasians were tested (Control region sequencing performed at AFDIL)

Samples were run on the array only once

15 ng (total) of genomic DNA were used (5 ng/PCR rxn)

How do array results compare with fluorescent sequencing for finding resolving SNPs?

Conclusions

The array has difficulties with calling insertions, deletions, closely spaced polymorphisms and poly-C stretch regions

Based on the amount of DNA required by the array it may not be useful for casework

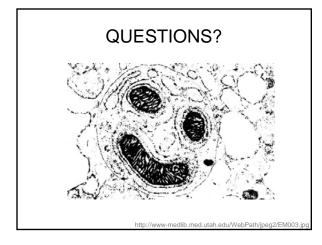
Won't take the place of fluorescent sequencing if 100% coverage is required, but it is a decent screening tool

It may have utility of discovering polymorphisms in reference individuals - these polymorphisms could then be targeted by traditional mtDNA sequencing methods (or SNP assays)

Thank You!

NIST Dr. John Butler Dr. Peter Vallone

Margaret Kline Jan Redman


Dept de Medicina Legal Dr. Cintia Friedman (Brasil)

AFDIL Dr. Tom Parsons (now at the ICMP) Suni Edson Jodi Irwin Suzie Barritt Rebecca Just Jessica Saunier Kim Sturk Toni Diegoli Katie Strouss Melissa Scheible

Ilona Letmanyi Christine Peterson AFDIL Scientists and Staff

Mike Coble - michael.coble@afip.osd.mil

