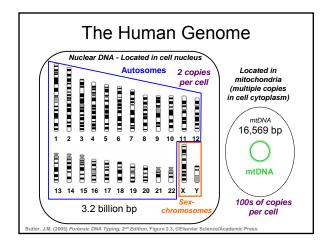
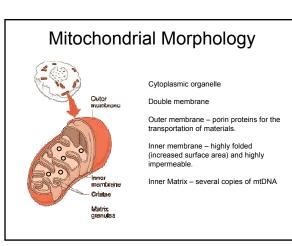
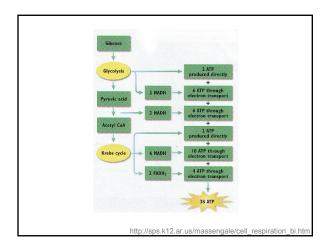
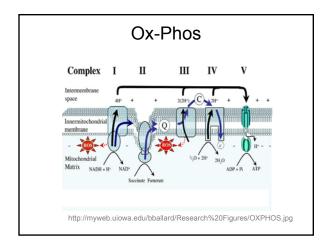

Goals and Objectives

- · Overview and theory behind mtDNA analysis
- The science behind mtDNA sequencing.
- Forensic casework applications of mtDNA.
- Tools for mtDNA screening Linear Arrays.
- Emerging mtDNA technologies mtDNA genome sequencing for increased discrimination, mtDNA micro-chip technology.
- · Summary and Questions

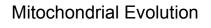





You Say Tomato... · Cowdry (1918) review of what microscopists called "mitochondria" Blepharoblasts Fadenkorper Mitogel Chondriokonts Parabasal bodies Chondriomites mitos = thread chondros = granule Chondrioplasts Plasmabioblasts Chondriosomes Plastochondria Chondriospheres Plastosomes Vermicules Filia Fuchsinophilic Sarcosomes Granules Interstitial bodies Korner Bioblasts


Mitochondrial Functions

Cellular Respiration – ATP production via oxidative-phosphorylation (OX-PHOS).


Apoptosis – programmed cell death Steroid synthesis Elongation of fatty acids Oxidation of epinephrine (adrenaline) Degradation of tryptophan Heme synthesis Heat production

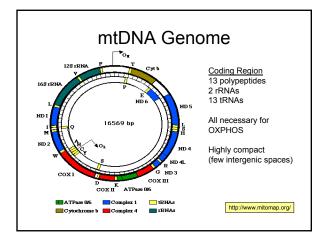
- Endosymbiotic Theory Ivan Wallin (1920s) and Lynn Margulis (1981).
- Proto-Eukaryotic cell incorporated a protobacterial cell and formed a symbiotic relationship.

Support for the Endosymbiotic Theory

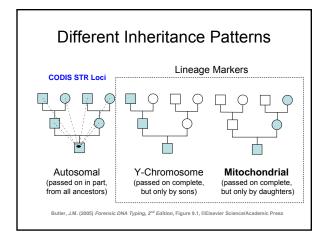
- Mitochondria have double membranes and the inner membrane is rich in cardiolipin.
- Mitochondria have their own genome, which is circular like bacteria (no histones), and use a genetic code for amino acids different that the nuclear DNA.
- New mitochondria are formed by a process similar to binary fission.
- Mitochondrial ribosomes are very similar to bacterial ribosomes (affected by antibiotics such as linezolid).

Lucky Guess or Clairvoyant?

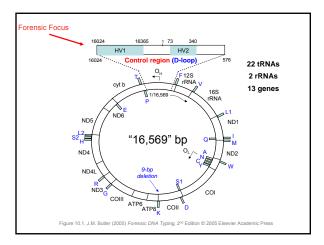
 1890 – R. Altman writes that "bioplasts" (mitochondria) are, "autonomous, elemental living units, forming bacteria-like colonies in the cytoplasm of the host cell."


Immo Scheffler, Mitochondria (1999)

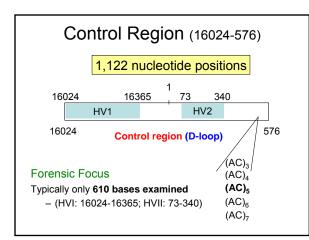
Mitochondrial Evolution

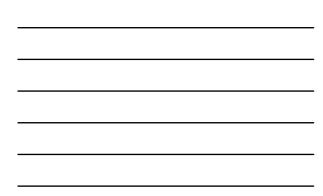

Complex		11		IV	v
Enzyme	NADH-CoQ Reductase	Succinate-CoQ Reductase	CoQ-Cytochrome C Reductase	Cytochrome C Oxidase	ATP Synthase
Inhibitor	Rotenone Amytal	TTFA malonate	Antimycin A	Cyanide Carbon Monoxide Azide	Oligomycin
Nuclear DNA Subunits	~43	4	10	10	~14
mtDNA Subunits	7 ND1-6, ND4L	0	1 Cytochrome b	3 COX I, II, III	2 ATPase 6 ATPase 8

~81 subunits encoded by the nuclear genome



Location and Copy Number of mtDNA


- Found within the mitochondria in the cellular cytoplasm.
- On average 4-5 copies of mtDNA molecules per mitochondria (range of 1-15 mtDNA copies).
- Number of mitochondria vary by cell type (e.g., muscles have more...).
- Generally, hundreds of mitochondria per cell.



mtDNA Is Not Always 16,569 bp ...

- Dinucleotide repeat at positions 514-524 (near end of control region)
 - Usually ACACACACAC or $(AC)_5$ in most individuals
 - Can vary from $(AC)_3$ to $(AC)_7$
- · Other insertions and deletions may occur
 - 9 bp deletion (positions 8277 to 8285) in some individuals from Asia and Pacific Islands (haplogroup B) and Africans (haplogroup L).

"Heavy" vs. "Light" Strand

- The two strands ("inner" and "outer" loops) of mtDNA can be separated with an alkaline CsCl gradient.
- Heavy or H-strand contains a greater number of guanine nucleotides (largest molecular weight of the four nucleotides) – purine rich.
- Light or L-strand contains more C and T nucleotides and is thus physically lighter (pyrimidine rich).
- H-strand codes for 28 gene products while the L-strand is used to transcribe 8 tRNAs and the ND6 protein product.

Original Reference Sequence

- Human mtDNA was first sequenced in 1981 in Frederick Sanger's lab located in Cambridge, England.
- Authors for this paper (Nature 1981, 290:457-465) were listed in alphabetical order so Stan <u>Anderson</u> was the first author.
- This sequence has come to be referred to as the "Anderson" sequence (GenBank accession: M63933).
- This first sequence is sometimes called the Cambridge Reference Sequence (CRS).

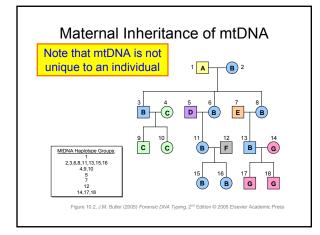
Re-Sequencing of CRS

- The 1981 sequence was derived primarily from a placenta of an individual with European ancestry; however, some HeLa and bovine sequence was used to fill in gaps due to early sequencing procedures performed.
- Re-analysis of original placental material by Andrews et al. (1999) found 11 nucleotides that differed from Anderson et al. (1981) sequence.
- This revised Cambridge Reference Sequence (rCRS) is now the accepted standard for comparison.

Г

RS (And	lerson et	t al. 198	31) and	rCRS (Andrews et al.
Nucleotide Position	Region of mtGenome	Original CRS	Revised CRS	Remarks
3106-3107	165 rRNA	cc	c	Error
3423	ND1	G	т	Error
4985	ND2	G	A	Error
9559	COIII	G	c	Error
11335	ND4	т	c	Error
13702	ND5	G	c	Error
14199	NDG	G	т	Error
14272	ND6	G	c	Error (bovine sequence inserted)
14365	ND6	G	c	Error (bovine sequence Inserted)
14368	ND6	G	с	Error
14766	qyt b	т	c	Error (HeLa sequence Inserted)

Further Comparison of CRS and rCRS


- No differences seen between CRS and rCRS within the mtDNA control region.
- The original CRS contained a "CC" at positions 3106-3107 but rCRS was found to possess only a single "C"

3100 3106 3108 ↓ ↓ TATCTACCTT Original CRS TATCTAC - TT Revised CRS

• Thus, rCRS is only 16,568 bp!

Maternal Inheritance of mtDNA

- · Fertilizing sperm contributes only nuclear DNA.
- Cellular components including the mitochondria in the cytoplasm come from the mother's ovum.
- Any sperm mitochondria that may enter a fertilized egg are selectively destroyed due to a ubiquitin tag added during spermatogenesis.
- Barring mutation, a mother passes her mtDNA type on to her children.

Summary - mtDNA Characteristics

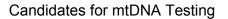
- High copy number of mtDNA.
- Maternal inheritance of mtDNA.
- Lack of recombination.
- High mutation rate compared to single copy nucDNA.

Methods for Measuring mtDNA Variation

- Low-resolution RFLP (1980s)
- High-resolution RFLP (1990s)
- Sequence analysis of HV1 and HV2 within control region (1991-present)
- Sequence analysis of complete mtDNA genome (2000-present)

Mitochondrial DNA Sequencing in Forensic Casework

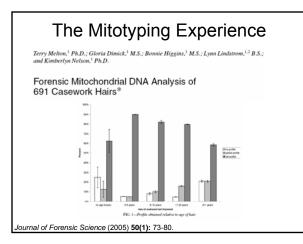
Issues and Examples

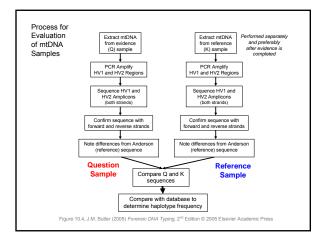

Role of mtDNA

Compared to Autosomal STRs

- Autosomal STRs provide a higher power of discrimination and <u>are the preferred method</u> whenever possible
- Due to high copy number, mitochondrial DNA (mtDNA) may be the only source of surviving DNA in highly degraded specimens or low quantity samples such as hair shafts
- A mtDNA result is better than no result at all...

omparison ar	nd mtDN	
Characteristics	Nuclear DNA (nucDNA)	Mitochondrial DNA (mtDNA)
Size of genome	~3.2 billion bp	~16569 bp
Copies per cell	2 (1 allele from each parent)	Can be > 1000
Percent of total DNA content per cell	99.75%	0.25%
Structure	Linear; packaged in chromosomes	Circular
Inherited from	Father and Mother	Mother
Chromosomal pairing	Diploid	Haploid
Generational recombination	Yes	No
Replication repair	Yes	No
Unique	Unique to Individual (except identical twins)	Not unique to Individual (same as maternal relatives)
Mutation rate	Low	At least 5–10 times nucDNA
Reference sequence	Described in 2001 by the Human Genome Project	Described in 1981 by Anderson and co-workers




- · Shed hairs lacking root bulb or attached tissue
- Fragments of hair shafts.
- Aged bones or teeth that have been subjected to long periods of exposure.
- Crime scene stains or swabs that were unsuccessful for nuclear DNA testing.
- Tissues (muscle, organ, skin) that were unsuccessful for nuclear DNA testing.

Terry Melton – International Symposium on the Application of DNA Technologies in Analytical Sciences

mtDNA Testing on Hairs

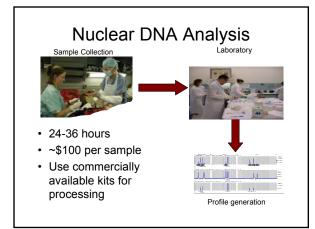
- Human hair shafts contain very little DNA but because mtDNA is in higher copy number it can often be recovered and successfully analyzed
- · Melanin found in hair is a PCR inhibitor
- Important Publications:
- Wilson, M.R., et al. (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. Biotechniques 18(4): 662-669.
 - Tissue grinding method described by FBI Lab
- Melton *et al.* (2005) Forensic mitochondrial DNA analysis of 691 casework hairs. J. Forensic Sci. 50(1): 73-80. – Obtained a full or partial mtDNA profile for >92% of hairs tested

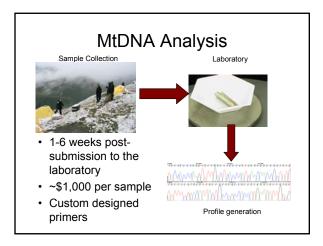
Mitochondrial DNA as a Means of Identification

When do you need it and why?

Why go to mtDNA?

· Disadvantages

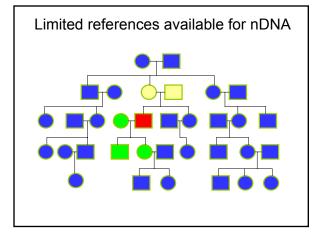

- mtDNA is not a positive form of identification (You have many maternal relatives!!)
- Easily contaminated with modern DNA

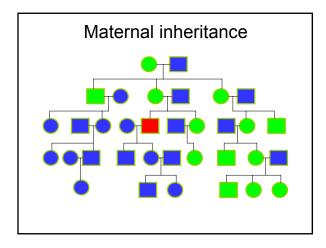

Contamination

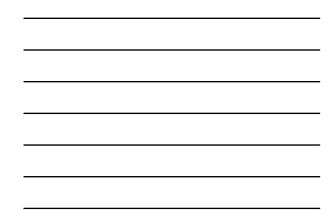
- Modern DNA can easily be introduced and overwhelm target DNA from the sample.
 - Due to the sensitivity of the reaction
 Increased cycle number
 - Increased Taq
- Appropriate controls must be implemented to assure that the mtDNA sequence being reported is authentic.
- Laboratories need to be designed to lessen the chances of contamination.

Why go to mtDNA?

- Disadvantages
 - mtDNA is not a positive form of identification (You have many maternal relatives!!)
 - Easily contaminated with modern DNA
 - Time-consuming and costly






Why go to mtDNA?

- Advantages
 - Maternally inherited
 - The pool of potential references is greatly increased.

Why go to mtDNA?

- Advantages
 - Maternally inherited
 - The pool of potential references is greatly increased.
 - Numerous copies of the mitochondrial DNA genome in each cell.

Why go to mtDNA?

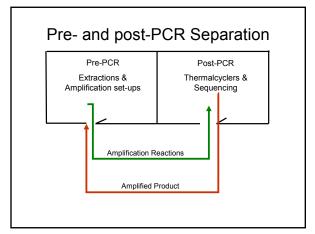
Advantages

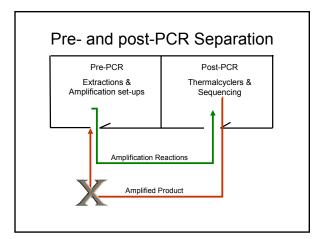
- Maternally inherited
 - The pool of potential references is greatly increased.
- Numerous copies of the mitochondrial DNA genome in each cell.
- Small genome size and multiple copies increase chances of recovering DNA from degraded samples.

Laboratory Design

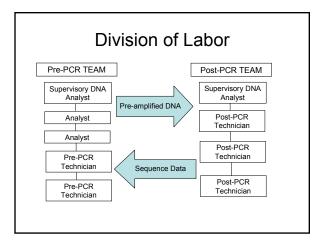
Organizing Your Space, People, and Samples

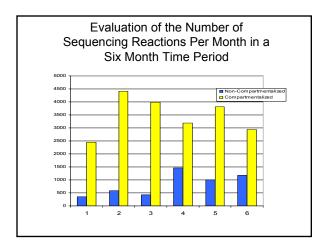
Laboratory Design


- All laboratories should be designed to be separated by use.
- At AFDIL, pre-PCR labs are physically separated from post-PCR by magnetically sealed doors and airlocks


Pre- and post-PCR Separation

- Separation of pre- and post-PCR areas prevents contamination.
 - Amplified product needs to be kept away from low quantity DNA areas.
 - Personnel flow from pre- and post-PCR areas needs to be controlled.





Staff Organization • Now that the spaces are separated, what do you do with the people? - Staff organization can not only reduce contamination but increase efficiency. Image: Contamination but increase efficiency.

Sample and Contamination Tracking

- With this type of sample volume comes the additional issues of tracking your samples and contamination.
 - Even if the lab is fairly small, chain of custody issues and overall processing need to be tracked efficiently.
 - Contamination needs to be tracked, found and eradicated before it becomes an issue.

LIMS System

- An automated computer system is the most efficient method for accomplishing these goals.
- Many laboratory information management systems are available commercially.
- The name of our system is Laboratory Information Systems Application or LISA.

Case Accessioning

- Names and identifies each piece of evidence that is received.
- Assigns a sequential case
 number.
- Controls who has access to which samples based on set of 'privileges'.
- Tracks Chain of Custody.
- Every step requires a password even once you are in the system.

Sample Storage

- Samples need to be stored at the appropriate temperatures.
 - Heat or large temperature fluctuations can cause further degradation of the DNA.
 - Bone material can be stored at ≤-20°C
 - Blood should be dried and stored at -20 $^\circ\text{C}$

Lab Processing

- Requires passwords throughout.
- Links all the forms and protocols used at AFDIL together.
- Procedures predicated on the completion of a step are not allowed until that step is finished.
- Designed to be compatible with sequencing equipment.

Contamination Tracking

- Contamination is a huge challenge in 'ancient' DNA laboratories.
- Must be able to guarantee that the sequence being generated is authentic and not modern.

How to control for contamination?

- Laboratory design
- Staff databases
- Contamination tracking via LISA
- Amplification controls

Control Databases

 All members of the staff, laboratory and administrative, at AFDIL have been profiled for both mitochondrial and nuclear DNA.

 The case management module of LISA has a separate database specifically for the sequences generated for contaminants

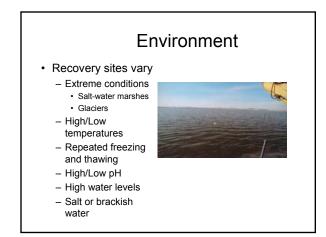
Contamination Tracking

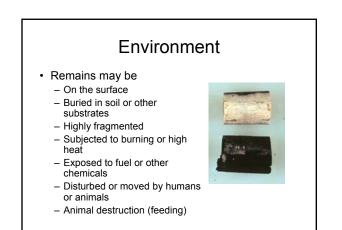
- Contamination can be tracked through the processing steps.
- LISA has a separate database specifically for the sequences generated for contaminants.
- Reports can be generated in LISA per primer pair and scientist to pinpoint a specific issue.

Degraded Skeletal Remains

What to choose and how to generate a full mtDNA profile.

Degraded Skeletal Remains


- Sample Selection
- Extraction Methods
- Amplification Strategies
- Sequencing Strategies


Degraded Specimens

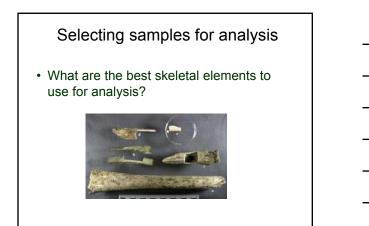
- In general terms all skeletal remains are degraded.
- Some are more degraded then others due to environmental stressors.
- Prudent sample selection will increase the rate of success.

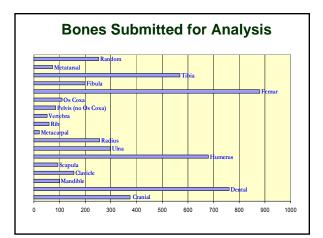
Storage Effects

Handling of Remains

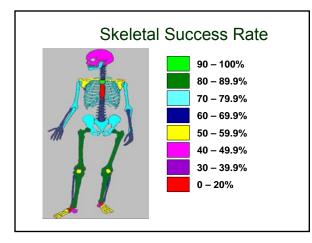
Temperature

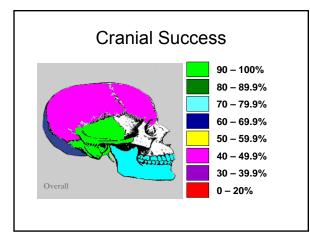
Storage Container

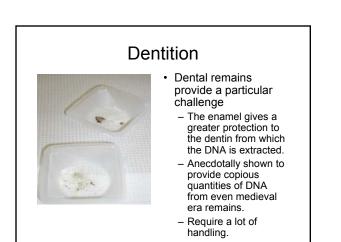



Sample Selection

- Unknown skeletal remains
 - Remains are examined and samples selected by anthropologists or medical examiners





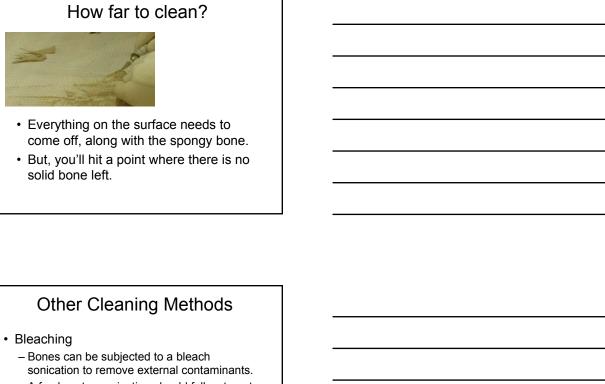


Bone Structure

- Bones with dense cortical structure tend to have a greater success rate.
 - Compact bone may inherently afford greater protection for it's deeper layers.
 - Trabecular bone and elements composed of thin cortical bone have a greater surface area
- Cranial fragments vary in success
 - Formed of a layer of trabecular bone sandwiched between two layers of cortical bone
 - Temporal and occipital tend to have denser cortical bone

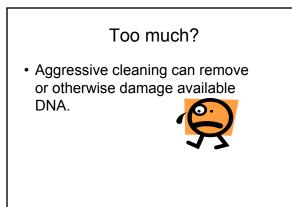
Extraction Methods

- Cleaning the samples how much is too much?
- What protocols give the greatest yield of DNA?
- What method is right for you?
- Trouble-shooting the extraction.


Cleaning the Sample

• The exterior of the bone fragment needs to be cleaned of any possible contaminants:

– Dirt


- Plant material
- Extraneous DNA
- Dried Tissue

- A fresh water sonication should follow to get rid of the bleach or DNA can be lost.
- "DNA Off" or other DNA removal products

Extraction Methods

- Numerous extraction methods available.
- · Involve different methods of -
 - pulverizing the samples
 - removing the DNA from the samples
- Different starting quantities of bone can also be used.

Pulverization Methods

- Freezer Mill
 - Uses liquid nitrogen and a magnet to pulverize the bone into a very fine powder.
 - Disadvantage:
 - Requires storage and handling of liquid nitrogen.
 - Grinders and sample vials are reused potential contamination.

Pulverization Method

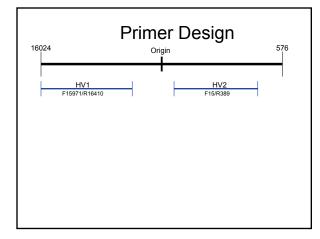
- · Waring Blender Cup
 - Also grinds bone to a relatively fine powder
 - Disadvantage: Cups are reused, so there is a possibility of contamination.

"Freeing" the DNA

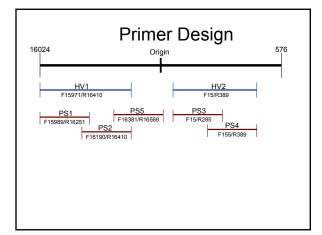
- Samples may be subjected to a decalcification step.
 - Demineralizes the bone matrix.
- Other chemical/physical treatments are commercially available to more easily acquire the DNA.
 - Silica gel
 - Charge Switch™
 - DNA IQ™

Extraction of Skeletal Remains

- The powdered bone is extracted with
 - 20mg/ml Proteinase K and extraction buffer
 Overnight at 56°C
- DNA is removed from the extraction buffer with
 - a series of washes with Phenol/ Chloroform/ Isoamyl alcohol
 - Purification of product with filters.

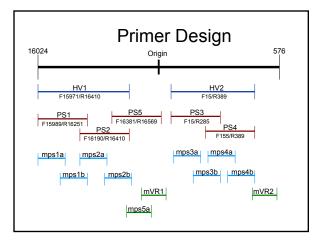

There's DNA, now what?

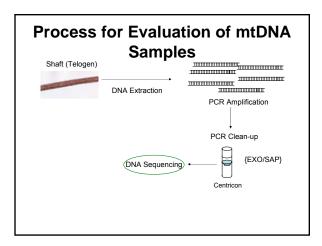
- · Quantification -
 - At AFDIL, we do not quantify prior to amplification.
 - Can quantify using a 1% Agarose gel and ethidium bromide.
 - CalDOJ has a quantitation method for both nuclear and mtDNA using qPCR.
 - Timken, et al. (2005), A duplex real-time qPCR Assay for the quantification of human nuclear and mitochondrial DNA in forensic samples: Implications for quantifying DNA in degraded samples. J. of Fors. Sci. 50(5): 1044-60.

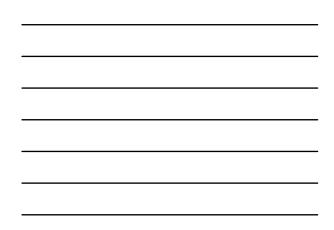

Amplification	
 A standard program for amplification is used for the 9700's. The basic program is modified based on the primer pair 	
used (Gabriel, et al. 2001) – 10-minute soak at 96.0°C – Followed by 38 cycles of • 20s at 94.0°C • 20s at 56.0°C • 30s at 72.0°C – Final hold at 4°C	

PCR Amplification of mtDNA

- Usually performed with 34-38 cycles
- Some protocols may go to 42 cycles for highly degraded specimens




Manhew N. Gabriel,¹ M.F.S.; Edwin F. Huffine,² M.S.; John H. Ryan,¹ Ph.D.; Mitchell M. Holland,¹ Ph.D.; and Thomas J. Parsons,¹ Ph.D. Improved MtDNA Sequence Analysis of Forensic Remains Using a "Mini-Primer Set" Amplification Strategy*



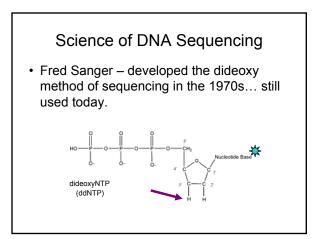
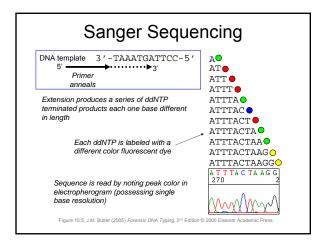
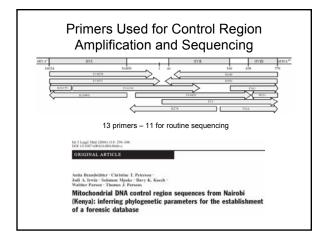
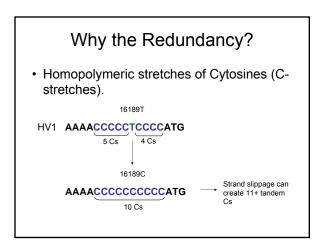


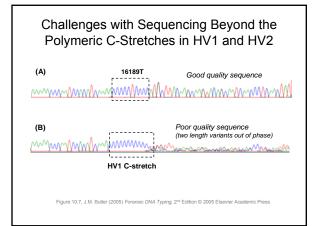
TABLE 2A-	Comparison of a			
	uegraue	d remains.	cess of most high	ly
	Primer Set		Mini-Primer Set	
Sample	PS1	(280bp)	MPS1A	(170bp
S1	-		-	
S2	+		-	
S3	-		-	
S4	-		+	
S5	-		+	
S6	-		+	
S7	-		+	
S8	-		-	
S9	-		+	
S10	-		+	
S11	-		-	
S12	-		-	
S13	-		+	
S14	-		+	
S15	-		+	

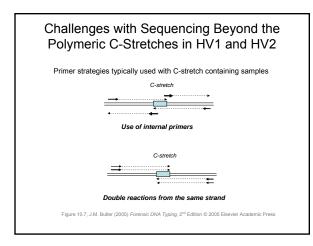


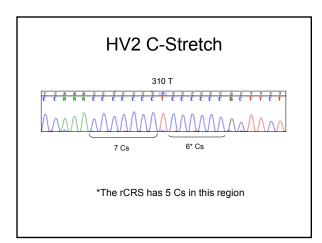




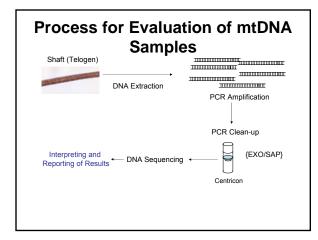












A word about SRMs
 NIST mtDNA SRM 2392 (1999) – contains 2 apparently normal cell lines (CHR and GM09947a) and a cloned DNA from CHR for HV1.
16189 T-C + 16193.1 C
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
HV1 C-stretch mixture of templates having 11 and 12 C's
The cloned DNA has only 11C's – so sequencing can continue without falling apart!

NIST SRM 2392-I

- (2003) Contains cell line HL-60 extract and documentation.
- SRM 2392-I complements SRM 2392 and was based on a suggestion from the FBI that this DNA would be particularly useful to the forensic community.

