
(as of December 2004)

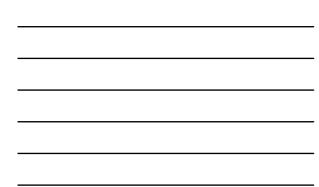


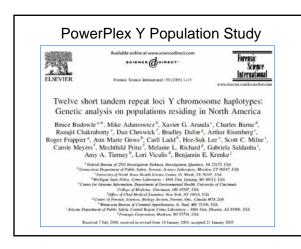


| Yfiler Haplotype Database                        |
|--------------------------------------------------|
| http://www.appliedbiosystems.com/yfilerdatabase/ |

| Population          | # Haplotypes | #Samples Contributed by NIST |
|---------------------|--------------|------------------------------|
| African American    | 985          | 259 African Americans        |
| Asian               | 330          | 3 Asians                     |
| Caucasian           | 1276         | 262 Caucasians               |
| Filipino            | 105          |                              |
| Hispanic            | 597          | 139 Hispanics                |
| Native American     | 106          |                              |
| Sub-saharan African | 59           |                              |
| Vietnamese          | 103          | Data provided by NIST        |
| All                 | 3561         | 663/3561 = <b>18.6%</b>      |




National U.S. Y-STR Population Database


- Efforts underway at the University of Central Florida (with NIJ funding) to consolidate all U.S. data on Y-STR loci for population
- Data from ReliaGene, Promega, Applied Biosystems being gathered plus any forensic lab population sample data available

| 👰 Current         | Y-STR Data                       | abases       |
|-------------------|----------------------------------|--------------|
| AGENCY            | # MARKERS                        | # SAMPLES    |
| NCFS              | 76                               | 1,396        |
| University of AZ  | 38                               | 2,518        |
| AB                | 17                               | 3,561        |
| Promega           | 12                               | 4,004        |
| Reliagene         | 11                               | 4,623        |
| Proposed National |                                  | 16,102       |
| Y-STR Database    | 9                                |              |
| Proposed National |                                  | 29,187       |
| Y-STR Database    | e                                | (54,863 MHL) |
| with YHRD         | e, CODIS Conference (Oct 2006) p | NIJ          |

|                                                     |           |            | population studies                           |
|-----------------------------------------------------|-----------|------------|----------------------------------------------|
| Population                                          | # Samples | # Loci     | Reference                                    |
| 5 North American<br>groups                          | 2,443     | 12         | Budowle et al. (2005) FSI 150:1-15           |
| U.S. Caucasians,<br>African Americans,<br>Hispanics | 647       | 22<br>(27) | Schoske et al. (2004) FSI 139:107-121        |
| Austrian                                            | 135       | 17         | Berger et al. (2005) IJLM, in press (Yfiler) |
| 91 European groups                                  | 12,700    | 7          | Roewer et al. (2005) Hum Genet 116:279-29    |

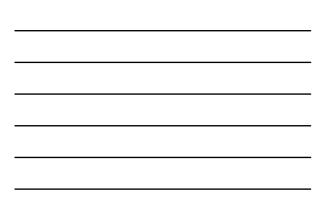
published (most of this data is deposited in the YHRD – Y Chromosome Haplotype Reference Database)

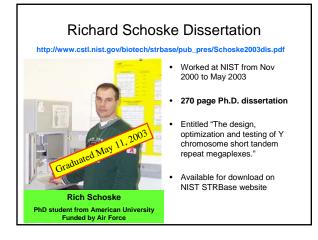


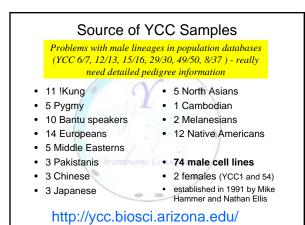


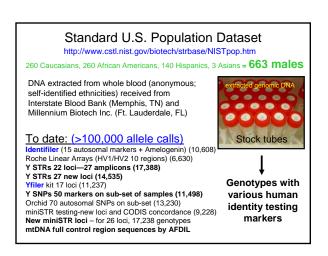


#### Initial 2,443 Samples in PowerPlex Y Haplotype Database

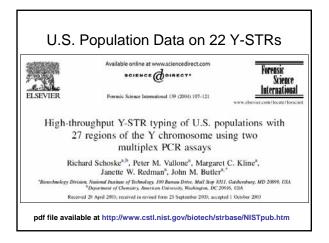

| Table 1<br>Sample populations | and number of inc       | dividuals (or hap   | (otypes) per sam | ple       | 159 C | anadian sa   | mples                              |
|-------------------------------|-------------------------|---------------------|------------------|-----------|-------|--------------|------------------------------------|
| Region                        | Location                | African<br>American | Caucasian        | Hispanic  | Asian | Asian Indian | Native Americar<br>(Apache/Navajo) |
| Canada                        | Ontario                 | 37                  | 57               |           | 28    | 37           |                                    |
| Northeast US                  | Connecticut<br>New York | 182<br>80           | 164<br>83        | 160<br>80 | 45    |              |                                    |
| Midwest US                    | Michigan<br>Minnesota   | 86                  | 97               | 97<br>101 | 101   |              |                                    |
| South US                      | Texas                   | 192                 | 194              | 192       | 73    |              |                                    |
| Southwest US                  | Arizona                 |                     |                  |           |       |              | 138/219                            |
| Total (N = 2443)              |                         | 577                 | 595              | 630       | 347   | 37           | 357                                |


PowerPlex® Y Haplotype Database http://www.promega.com/techserv/tools/pplexy/

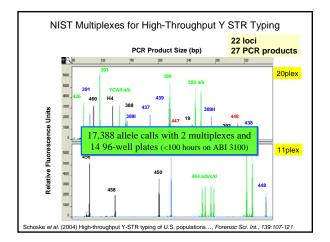

| -     | Population                                      | Sample |    |          |      |       |              | Frequer      |               |        |       |    |                       |
|-------|-------------------------------------------------|--------|----|----------|------|-------|--------------|--------------|---------------|--------|-------|----|-----------------------|
| Locus | Ethnicity                                       | Size   | 10 | 11       | 12   | 13    | 14           | 15           | 16            | 17     | 18    | 19 | Reference             |
| 01213 | EUROPE<br>Innsbruck (Austria)                   | 100    |    | -        |      |       |              |              |               |        |       | -  | Kayser et al. 1997    |
|       |                                                 | 86     |    |          |      | 0.14  | 0.56         | 0.23         | 0.07          | 0.01   | 0.012 | -  | Carracedo et al. 1997 |
|       | Germany<br>Bavaria (Germany)                    | 161    |    | 0.07     |      | NL.   | 0.512        |              | 0.001         | 0.046  | 0.042 | -  | Ansinger et al. 2000  |
|       |                                                 | 163    |    | -        | -    |       | NL<br>0.5662 | N4,<br>0.268 | NL,<br>0.0515 | NE,    | _     | -  | Hidding et al. 2000   |
|       | Cologne (Germany)<br>South Wuntenberg (Germany) | 218    |    | <u> </u> |      | 0.041 | 0.5321       | 0.268        | 0.0826        | 0.0515 |       | -  | Graw et al. 2000      |
|       | Soun wurnenderg (Germany)<br>Munster (Germany)  | 272    |    |          |      | 0.04  | 0.5321       | 0.2431       | 0.0026        | 0.04   |       | -  | Kayser et al. 1997    |
|       | Kob (Germany)                                   | 100    |    |          | -    | 0.04  | 0.62         | 0.25         | 0.05          | 0.04   |       | -  | Kayser et al. 1997    |
|       | Jena (Germany)                                  | 143    |    | -        |      | 0.06  | 0.55         | 0.18         | 0.16          | 0.05   | -     | -  | Kayser et al. 1997    |
|       | Heidelberg (Germany)                            | 113    |    |          |      | 0.07  | 0.5          | 0.29         | 0.09          | 0.04   |       | -  | Kayser et al. 1997    |
|       | Hanover (Germany)                               | 53     |    |          |      | 0.07  | 0.49         | 0.29         | 0.13          | 0.02   |       | -  | Kayser et al. 1997    |
|       | Magdeberg (Germany)                             | 210    |    |          |      | 0.05  | 0.47         | 0.25         | 0.17          | 0.04   |       | -  | Kayser et al. 1997    |
|       | Braderiturg (Germany)                           | 233    |    | <u> </u> | -    | 0.03  | 0.45         | 0.20         | 0.15          | 0.1    |       | -  | Kayser et al. 1997    |
|       | Munich 1 (Germany)                              | 126    |    | -        | -    | 0.05  | 0.45         | 0.25         | 0.15          | 0.03   |       | -  | Kayper et al. 1997    |
|       | Munich 2 (Germany)                              | 259    |    |          | -    | 0.16  | 0.45         | 0.17         | 0.19          | 0.03   |       | -  | Kayser et al. 1997    |
|       | Berlin 1/Oermany                                | 233    |    | -        | -    | 0.16  | 0.45         | 0.17         | 0.19          | 0.05   | -     | -  | Kayser et al. 1997    |
|       | Bremen                                          | 49     |    |          |      | 0.1   | 0.59         | 0.16         | 0.14          | 0.00   |       |    | Kayper et al. 1997    |
|       | Leiden                                          | 88     |    | -        | -    | 0.04  | 0.7          | 0.19         | 0.03          | 0.02   |       | -  | Kayser et al. 1997    |
|       | Leicester, pooled                               | 339    |    | -        | 0.01 | 0.04  | 0.45         | 0.26         | 0.16          | 0.02   | 0.01  | -  | Kayser et al. 1997    |
|       | Bröch                                           | 41     |    | -        | 0.01 | 0.05  | 0.8          | 0.1          | 0.02          | 0.02   |       | -  | Kayser et al. 1997    |
|       | Bratislava                                      | 57     |    | -        |      | 0.07  | 0.19         | 0.21         | 0.02          | 0.21   |       | -  | Kayser et al. 1997    |
|       | Norway                                          | 300    |    | -        |      | 0.027 | 0.527        | 0.313        | 0.1200        | 0.013  | _     | -  | Kayser et al. 1997    |


Information is available to the community through the STRBase website

 permits analysis of optimal markers for particular population








http://www.cstl.nist.gov/biotech/strbase/training.htm

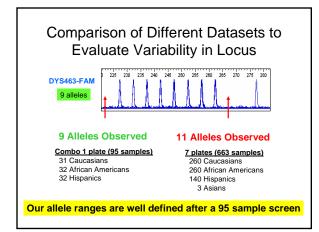






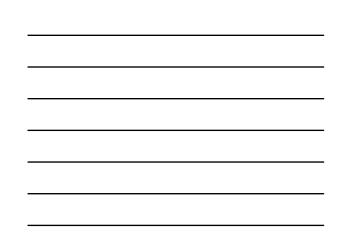
| <br> |
|------|
|      |

| US haplotype              |                   | Pooled Pop<br>STR div |      | African As<br>STR div |      | Cauca<br>STR div |        |        | panic<br>iversity |
|---------------------------|-------------------|-----------------------|------|-----------------------|------|------------------|--------|--------|-------------------|
| Reliagene kits)           |                   | (N=647)               | Rank | (N=260)               | Rank | (N=244)          | ) Rank | (N=14) | 3) Rank           |
|                           | DYS464<br>a/b/c/d | 0.956                 | 1    | 0.954                 | 1    | 0.934            | 1      | 0.937  | 1                 |
| Yfiler                    | DYS385<br>a/b     | 0.912                 | 2    | 0.942                 | 2    | 0.838            | 2      | 0.901  | 2                 |
| (ABI)                     | YCAII a/b         | 0.790                 | 3    | 0.797                 | 3    | 0.701            | 5      | 0.772  | 4                 |
| $\rightarrow$             | DYS458            | 0.765                 | 4    | 0.758                 | 5    | 0.743            | 3      | 0.793  | 3                 |
|                           | DYS390            | 0.764                 | 5    | 0.664                 | 10   | 0.701            | 5      | 0.665  | 13                |
|                           | DYS447            | 0.747                 | 6    | 0.767                 | 4    | 0.683            | 7      | 0.748  | 5                 |
|                           | DYS389II          | 0.736                 | 7    | 0.722                 | 6    | 0.675            | 8      | 0.734  | 6                 |
| $\rightarrow$             | DYS448            | 0.721                 | 8    | 0.722                 | 6    | 0.595            | 11     | 0.704  | 8                 |
| $\rightarrow$             | DYS456            | 0.700                 | 9    | 0.671                 | 9    | 0.731            | 4      | 0.695  | 9                 |
| PowerPlex Y               | DYS438            | 0.691                 | 10   | 0.560                 | 15   | 0.594            | 12     | 0.690  | 10                |
| (Promega)                 | DYS19             | 0.676                 | 11   | 0.722                 | 6    | 0.498            | 19     | 0.672  | 12                |
| (Fromogu)                 | DYS439            | 0.656                 | 12   | 0.636                 | 11   | 0.639            | 9      | 0.717  | 7                 |
| $\rightarrow \rightarrow$ | DYS437            | 0.637                 | 13   | 0.499                 | 17   | 0.583            | 13     | 0.624  | 14                |
| →                         | H4                | 0.611                 | 14   | 0.612                 | 12   | 0.562            | 14     | 0.609  | 15                |
| +C4 →                     | DYS392            | 0.609                 | 15   | 0.434                 | 20   | 0.596            | 10     | 0.673  | 11                |
|                           | DYS460            | 0.570                 | 16   | 0.568                 | 14   | 0.555            | 15     | 0.556  | 18                |
|                           | DYS3891           | 0.549                 | 17   | 0.531                 | 16   | 0.538            | 17     | 0.596  | 16                |
|                           | DYS391            | 0.534                 | 18   | 0.447                 | 19   | 0.552            | 16     | 0.577  | 17                |
|                           | DYS426            | 0.519                 | 19   | 0.375                 | 21   | 0.482            | 20     | 0.522  | 19                |
|                           | DYS450            | 0.489                 | 20   | 0.487                 | 18   | 0.177            | 22     | 0.414  | 21                |
|                           | DYS393            | 0.485                 | 21   | 0.586                 | 13   | 0.363            | 21     | 0.448  | 20                |
|                           | DYS388            | 0.365                 | 22   | 0.246                 | 22   | 0.501            | 18     | 0.312  | 22                |



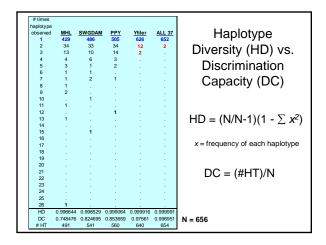

### Statistical Calculations on Y-STR Data

- Locus (gene) Diversity = (n/n-1)(1 Σp<sub>i</sub><sup>2</sup>) where n is the number of samples in the dataset and p<sub>i</sub> is the frequency of the i<sup>th</sup> allele
- Haplotype Diversity (HD) =  $(n/n-1)(1 \Sigma p_i^2)$  where n is the number of samples in the dataset and  $p_i$  is the frequency of the i<sup>th</sup> haplotype
- Random Match Probability (RMP) = 1 HD
- Discrimination Capacity (DC) total number of observed haplotypes divided by the total number of individuals in the dataset
- Unique Haplotypes (UH) number of haplotypes that occur only once in the dataset


| Locus  | Allele | Size Range (bp) | Count | Combined F | req (N = 661) |
|--------|--------|-----------------|-------|------------|---------------|
| DYS463 | 17     | 222.45          | 1     | Combined I | 0.001         |
|        | 18     | 227.34-227.44   | 27    |            | 0.040         |
|        | 19     | 232.30-232.39   | 7     |            | 0.010         |
|        | 20     | 237.24-237.44   | 151   |            | 0.228         |
|        | 21     | 242.21-242.41   | 67    |            | 0.101         |
|        | 22     | 247.12-247.40   | 74    |            | 0.112         |
|        | 23     | 252.13-252.33   | 35    |            | 0.053         |
|        | 24     | 257.05-257.49   | 256   |            | 0.387         |
|        | 25     | 262.01-262.26   | 37    |            | 0.056         |
|        | 26     | 267.05-267.21   | 5     |            | 0.007         |
|        | 28     | 277.22          | 1     |            | 0.001         |
|        |        | failure         | 2     |            |               |
|        |        |                 |       |            | STR diversit  |
|        |        | TOTAL           | 661   |            | 0.768         |

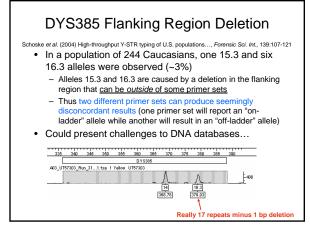


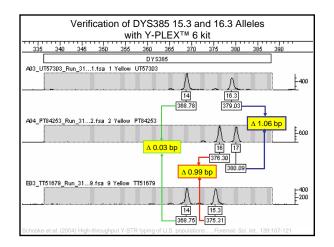


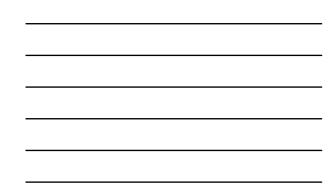


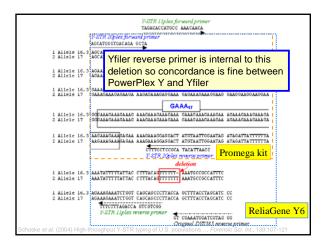

| US haploty                                                            |                                                                           |                                                                         |                                 |               |                                 |          |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|----------|
| Y-STR Marker                                                          | 260 African                                                               | Americans                                                               | 244 Cau                         | casians       | <u>143 H</u>                    | ispanics |
| Combinations                                                          | HD                                                                        | RMP                                                                     | HD                              | RMP           | HD                              | RMP      |
| "minimal" haplotype                                                   | 0.9982                                                                    | 0.0018                                                                  | 0.9946                          | 0.0053        | 0.9957                          |          |
| "extended" haplotype<br>"U.S. haplotype"                              | 0.9988                                                                    | 0.0012                                                                  | 0.9971                          | 0.0029 0.0026 | 0.9975<br>0.9986                |          |
| HD = haplotype diver<br>RMP = random match                            | sity<br>h probability<br>I <b>plotype</b>                                 | (1-HD)                                                                  | HD = (n/                        |               | d haplo                         | otype    |
| HD = haplotype diver<br>RMP = random matel                            | n probability<br>plotype<br>in all                                        | (1-HD)<br>is as go<br>major U                                           | HD = (n/<br>od as e<br>I.S. pop | xtende        | d haplo<br>Is                   |          |
| HD = haplotype diver<br>RMP = random matel                            | n probability<br>plotype<br>in all                                        | (1-HD)                                                                  | HD = (n/<br>od as e<br>I.S. pop | xtende        | d haplo                         |          |
| HD = haplotype diver<br>RMP = random matel<br>U.S. ha<br>Y-STR Marker | n probability<br>plotype<br>in all                                        | (1-HD)<br>is as go<br>major U                                           | HD = (n/<br>od as e<br>I.S. pop | xtende        | d haplo<br>Is                   |          |
| HD = haplotype diver<br>RMP = random matel<br>U.S. ha<br>Y-STR Marker | sity<br>h probability<br>aplotype<br>in all<br>260 Africar<br>DC<br>88 39 | (1-HD)<br>is as go<br>major U<br><u>Americans</u><br><u>UH</u><br>§ 213 | HD = (n/<br>od as e<br>J.S. pop |               | d haplo<br>is<br><u>143 His</u> | panics   |

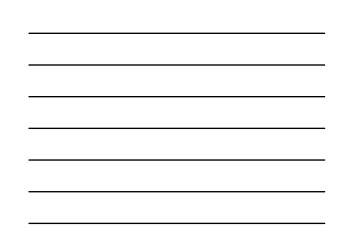


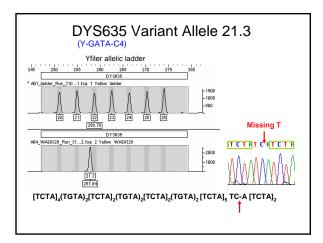

| Y-STR Marker<br>Combinations                                                                                    | 260 Africa                                               | n Americans                                  | 244 Ca                                                   | ucasians                                     | <u>143</u>                                         | 143 Hispanics                                                                                                                                                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Combinations                                                                                                    | HD                                                       | RMP                                          | HD                                                       | RMP                                          | HD                                                 | RMP                                                                                                                                                                       |  |  |  |
| Y-PLEX 6 kit                                                                                                    | 0.9974                                                   | 0.0026                                       | 0.9914                                                   | 0.0086                                       | 0.993                                              | 34 0.0066                                                                                                                                                                 |  |  |  |
| "minimal" haplotype                                                                                             | 0.9982                                                   | 0.0018                                       | 0.9946                                                   | 0.0053                                       | 0.995                                              | 0.0043                                                                                                                                                                    |  |  |  |
| "extended" haplotype                                                                                            | 0.9988                                                   | 0.0012                                       | 0.9971                                                   | 0.0029                                       | 0.99                                               | 5 0.0025                                                                                                                                                                  |  |  |  |
| "U.S. haplotype"                                                                                                | 0.9993                                                   | 0.0007                                       | 0.9974                                                   | 0.0026                                       | 0.998                                              | 6 0.0014                                                                                                                                                                  |  |  |  |
| Y-STR 11plex                                                                                                    | 0.9993                                                   | 0.0007                                       | 0.9987                                                   | 0.0013                                       | 0.999                                              | 0.0008                                                                                                                                                                    |  |  |  |
| Y-STR 20plex                                                                                                    | 0.9998                                                   | 0.0002                                       | 0.9998                                                   | 0.0002                                       | 0.999                                              | 0.0002                                                                                                                                                                    |  |  |  |
| 22 Y-STRs                                                                                                       | 0.9999                                                   | 0.0001                                       | 0.9999                                                   | 0.0001                                       | 0.999                                              | 9 0.0001                                                                                                                                                                  |  |  |  |
| Top 10 (w/o YCAII a/b)                                                                                          | 0.9999                                                   | 0.0001                                       | 0.9999                                                   | 0.0001                                       | 0.999                                              | 9 0.0001                                                                                                                                                                  |  |  |  |
|                                                                                                                 |                                                          |                                              |                                                          |                                              |                                                    | 143 Hispanics                                                                                                                                                             |  |  |  |
| Y-STR Marker                                                                                                    | 260 Afric                                                | an Americans                                 | 244 Ca                                                   | ucasians                                     | <u>143</u>                                         | Hispanics                                                                                                                                                                 |  |  |  |
| Y-STR Marker<br>Combinations                                                                                    | 260 Afric                                                | an Americans<br><u>UH</u>                    | <u>244 Ca</u><br>DC                                      | ucasians<br><u>UH</u>                        | <u>143</u><br>DC                                   | Hispanics<br><u>UH</u>                                                                                                                                                    |  |  |  |
|                                                                                                                 |                                                          |                                              |                                                          |                                              |                                                    | UH                                                                                                                                                                        |  |  |  |
| Combinations                                                                                                    | DC                                                       | <u>UH</u>                                    | DC                                                       | UH                                           | DC                                                 | <u>UH</u><br>% 97                                                                                                                                                         |  |  |  |
| Combinations<br>Y-PLEX 6 kit                                                                                    | <u>DC</u><br>82.3%                                       | <u>UH</u><br>188                             | <u>DC</u><br>68.9%                                       | <u>UH</u><br>136                             | DC<br>78.3                                         | <u>UH</u><br>% 97<br>% 100                                                                                                                                                |  |  |  |
| Combinations<br>Y-PLEX 6 kit<br>"minimal" haplotype                                                             | DC<br>82.3%<br>88.5%                                     | UH<br>188<br>213                             | DC<br>68.9%<br>75.8%                                     | <u>UH</u><br>136<br>161                      | DC<br>78.3<br>81.1                                 | <u>UH</u><br>% 97<br>% 100<br>% 120                                                                                                                                       |  |  |  |
| Combinations<br>Y-PLEX 6 kit<br>"minimal" haplotype<br>"extended" haplotype                                     | <u>DC</u><br>82.3%<br>88.5%<br>91.9%                     | UH<br>188<br>213<br>227                      | DC<br>68.9%<br>75.8%<br>83.6%                            | <u>UH</u><br>136<br>161<br>184               | DC<br>78.3<br>81.1<br>89.5                         | <u>UH</u><br>% 97<br>% 100<br>% 120<br>% 121                                                                                                                              |  |  |  |
| Combinations<br>Y-PLEX 6 kit<br>"minimal" haplotype<br>"extended" haplotype<br>"U.S. haplotype"                 | DC<br>82.3%<br>88.5%<br>91.9%<br>91.9%                   | UH<br>188<br>213<br>227<br>222               | DC<br>68.9%<br>75.8%<br>83.6%<br>82.3%                   | UH<br>136<br>161<br>184<br>176               | DC<br>78.3<br>81.1<br>89.5<br>93.3                 | UH<br>% 97<br>% 100<br>% 120<br>% 121<br>% 127                                                                                                                            |  |  |  |
| Combinations<br>Y-PLEX 6 kit<br>"minimal" haplotype<br>"extended" haplotype<br>"U.S. haplotype"<br>Y-STR 11plex | <u>DC</u><br>82.3%<br>88.5%<br>91.9%<br>91.9%<br>93.1%   | UH<br>188<br>213<br>227<br>222<br>227<br>222 | DC<br>68.9%<br>75.8%<br>83.6%<br>82.3%<br>88.5%          | UH<br>136<br>161<br>184<br>176<br>198        | DC<br>78.3<br>81.1<br>89.5<br>93.3<br>94.4         | UH           %         97           %         100           %         120           %         121           %         127           %         139                         |  |  |  |
| Combinations Y-PLEX 6 kit "minimal" haplotype "extended" haplotype "U.S. haplotype" Y-STR 11plex Y-STR 20plex   | DC<br>82.3%<br>88.5%<br>91.9%<br>91.9%<br>93.1%<br>98.5% | UH<br>188<br>213<br>227<br>222<br>227<br>252 | DC<br>68.9%<br>75.8%<br>83.6%<br>82.3%<br>88.5%<br>97.2% | UH<br>136<br>161<br>184<br>176<br>198<br>230 | DC<br>78.3<br>81.1<br>89.5<br>93.3<br>94.4<br>98.6 | UH           %         97           %         100           %         120           %         121           %         127           %         139           %         141 |  |  |  |



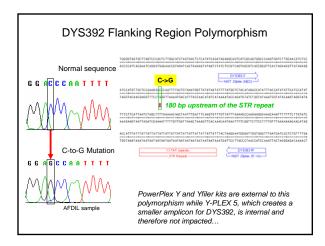





# Y-STR Variants and Mutations













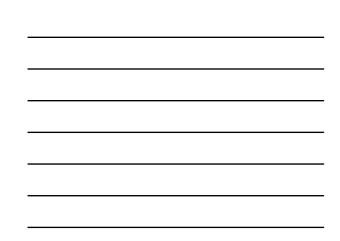





### NIST Work with Father-Son Samples

- Samples obtained from paternity testing laboratory as buccal swabs, extracted with DNA-IQ, quantified, diluted to 0.5 ng/uL
- To-date: 100 father-son pairs of U.S. Caucasian, African American, Hispanic, and Asian (800 samples)
- Verified autosomal STR allele sharing with Identifiler (QC for gender and potential sample switches)
- Typed with Yfiler (17 Y-STRs) examined mutations

|        |                   | /pes in a Single Gene<br>(ayser et al. AJHG 2000, 66:15) |          |
|--------|-------------------|----------------------------------------------------------|----------|
| # STRs | Prob. no mutation | Prob. at least one muta                                  | 1        |
| 1      | 0.99720000        | 0.00280000                                               |          |
| 2      | 0.99440784        | 0.00559216                                               |          |
| 3      | 0.99162350        | 0.00837650                                               |          |
| 4      | 0.98884695        | 0.01115305                                               |          |
| 5      | 0.98607818        | 0.01392182                                               |          |
| 6      | 0.98331716        | 0.01668284                                               |          |
| 7      | 0.98056387        | 0.01943613                                               |          |
| 8      | 0.97781829        | 0.02218171                                               |          |
| 9      | 0.97508040        | 0.02491960                                               |          |
| 10     | 0.97235018        | 0.02764982                                               |          |
| 11     | 0.96962760        | 0.03037240                                               |          |
| 12     | 0.96691264        |                                                          | .3% with |
|        |                   | 1                                                        | 2 Y-STR  |
| 40     | 0.89390382        | 0.10609618                                               |          |

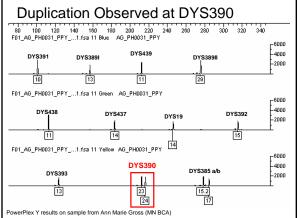

### Separating Brothers with 47 Y-STRs

- Two suspected brothers (ZT79338 and ZT79339) are part of our ~660 U.S. sample dataset at NIST.
- Thus far, we have generated 47 Y-STR allele calls on these samples.
- A mutation at DYS391 separates these individuals (one contains allele 11 and the other allele 10).
- These samples share autosomal STR alleles and contain identical mtDNA sequences.

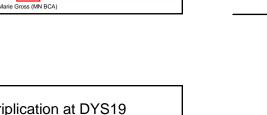
٦

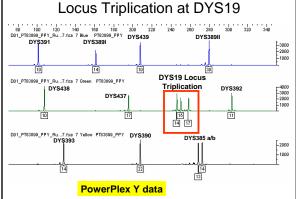
Г

| Yfiler kit loci | Lite      | erature Sur | nmary *       |           |           |               |        |
|-----------------|-----------|-------------|---------------|-----------|-----------|---------------|--------|
| Locus           | Mutations | # Meioses   | Mutation Rate | Mutations | # Meioses | Mutation Rate | TOTAL  |
| DYS19           | 12        | 7272        | 0.165%        | 0         | 297       | 0.000%        | 0.159% |
| DYS3891         | 11        | 5476        | 0.201%        | 3         | 297       | 1.010%        | 0.243% |
| DYS389II        | 12        | 5463        | 0.220%        | 3         | 297       | 1.010%        | 0.260% |
| DYS390          | 16        | 6824        | 0.234%        | 1         | 293       | 0.341%        | 0.239% |
| DYS391          | 23        | 6702        | 0.343%        | 0         | 297       | 0.000%        | 0.329% |
| DYS392          | 4         | 6668        | 0.060%        | 0         | 297       | 0.000%        | 0.057% |
| DYS393          | 4         | 5456        | 0.073%        | 0         | 298       | 0.000%        | 0.070% |
| DYS385a/b       | 22        | 9980        | 0.220%        | 0         | 297       | 0.000%        | 0.214% |
| DYS438          | 1         | 2434        | 0.041%        | 0         | 297       | 0.000%        | 0.037% |
| DYS439          | 12        | 2409        | 0.498%        | 2         | 296       | 0.676%        | 0.518% |
| DYS437          | 5         | 2395        | 0.209%        | 0         | 296       | 0.000%        | 0.186% |
| DYS448          | 0         | 143         | 0.000%        | 0         | 294       | 0.000%        | <0.23% |
| DYS456          | 1         | 143         | 0.699%        | 1         | 296       | 0.338%        | 0.456% |
| DYS458          | 3         | 143         | 2.098%        | 2         | 297       | 0.673%        | 1.136% |
| DYS635          | 3         | 1016        | 0.295%        | 3         | 298       | 1.007%        | 0.457% |
| GATA-H4         | 3         | 1179        | 0.254%        | 2         | 296       | 0.676%        | 0.339% |

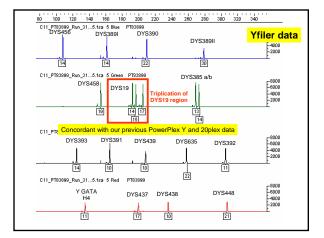



| Father-Son Pairs |        |                      |                    |                   |                   |  |  |  |  |  |  |  |
|------------------|--------|----------------------|--------------------|-------------------|-------------------|--|--|--|--|--|--|--|
| Ethnicity        | Sample | locus                | Allele<br>(father) | Allele<br>(child) | Comments          |  |  |  |  |  |  |  |
| African American | 65B    | Y GATA H4            | 11                 | 9                 | loss of 2 repeats |  |  |  |  |  |  |  |
| African American | 46B    | DYS389I and DYS389II | 14,30              | 13,29             | loss of 1 repeat  |  |  |  |  |  |  |  |
| African American | 58B    | DYS389I and DYS389II | 14,32              | 15,33             | gain of 1 repeat  |  |  |  |  |  |  |  |
| African American | 18B    | DYS390               | 24                 | 23                | loss of 1 repeat  |  |  |  |  |  |  |  |
| African American | 90B    | DYS456               | 15                 | 16                | gain of 1 repeat  |  |  |  |  |  |  |  |
| African American | 16B    | DYS458               | 18                 | 19                | gain of 1 repeat  |  |  |  |  |  |  |  |
| African American | 39B    | DYS458               | 18                 | 19                | gain of 1 repeat  |  |  |  |  |  |  |  |
| African American | 16B    | DYS635               | 23                 | 22                | loss of 1 repeat  |  |  |  |  |  |  |  |
| African American | 47B    | DYS635               | 22                 | 23                | gain of 1 repeat  |  |  |  |  |  |  |  |
| African American | 72B    | DYS635               | 22                 | 23                | gain of 1 repeat  |  |  |  |  |  |  |  |
| African American | 22B    | DYS448               | 19,20              | 19,20             | Duplication       |  |  |  |  |  |  |  |
| African American | 72B    | DYS448               | 19,20              | 19,20             | Duplication       |  |  |  |  |  |  |  |
| African American | 97B    | DYS448               | 17.2,19,20         | 17.2,19,20        | Triplication *    |  |  |  |  |  |  |  |
| African American | 33B    | DYS389I and DYS389II |                    |                   | Deletion *        |  |  |  |  |  |  |  |
| African American | 33B    | DYS439               |                    |                   | Deletion *        |  |  |  |  |  |  |  |

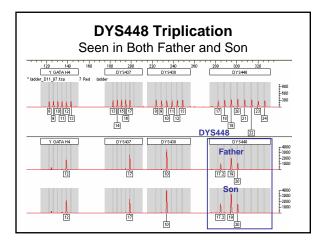


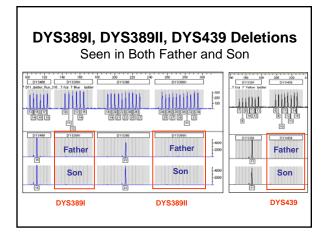

Events that impact Y-STR interpretation



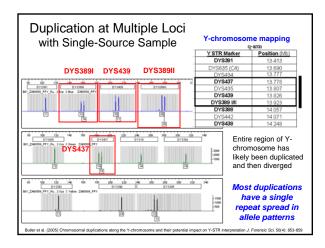


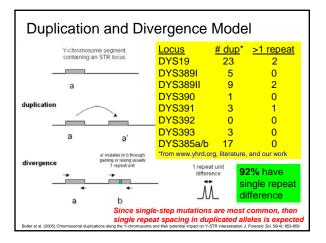










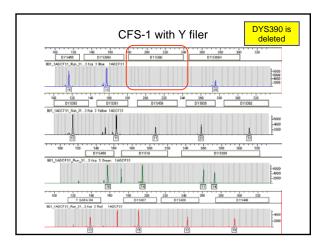




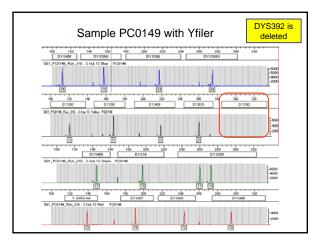


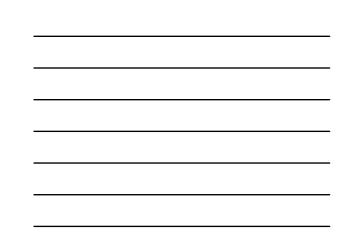

| <br> |
|------|
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |

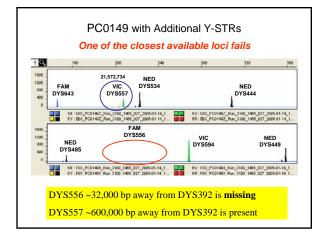
Deciphering between a Mixture of Multiple Males and Locus Duplication


- Note the number of loci containing >1 allele (other than multi-copy DYS385)
- Consider relative position on the Ychromosome if multiple loci have two alleles
- See if repeat spread is >1 repeat unit
- Examine DYS385 for presence of >2 alleles

Locus duplication along the Y-chromosome is in many ways analogous to heteroplasmy in mitochondrial DNA, which depending on the circumstances can provide greater strength to a match between two DNA samples.


me and their pot


ns along the Y-chr


ntial impact on Y-STR inte



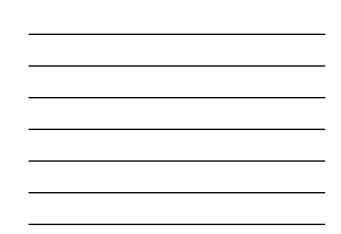


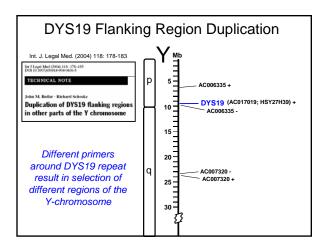




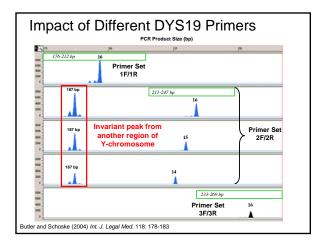




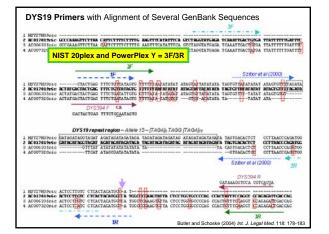

## Deletions of some Y-STRs can be an inadvertent diagnosis of male infertility

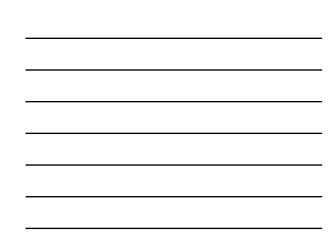

King et al. (2005) Inadvertent diagnosis of male infertility through genealogical DNA testing. J. Med. Genet. 42:366-368

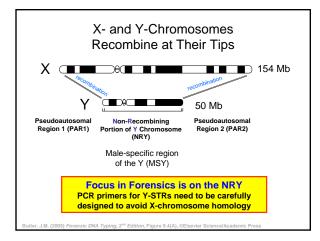
- AZFa deletion (<1 in 100,000 men): expected to lack DYS389I/II, DYS437, DYS438, DYS439
- AZFb deletion (very rare): expected to lack DYS385 and DYS392
- AZFc deletion (1 in 4,000 men): expected to lack DYS464
- Possible that "incomplete" haplotypes are not being submitted to the Y-STR haplotype databases
- Thus, Y-STRs are not neutral with respect to fertility information


### November 1, 2006

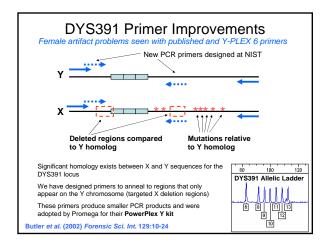
| Promeo<br>Y-dele<br>for in | eti    | 0      | n      | t       | es    |        |        |          |         | e      | te        | C     | ti                          | 0    | n    | 5       | syst                                           | e De<br>em,         |                      | on                   | 1 14. 241            | O<br>Promega |
|----------------------------|--------|--------|--------|---------|-------|--------|--------|----------|---------|--------|-----------|-------|-----------------------------|------|------|---------|------------------------------------------------|---------------------|----------------------|----------------------|----------------------|--------------|
|                            | st     | ir     | g      |         |       | V001   | ALEUY  | - KAL-Y  |         |        |           |       | - 34CY<br>- 07219 (no sent) |      |      |         | - RBMYI, RSAY2 Chutter<br>- DA2 (Clutter)<br>H | ttp://ww            | /w.pron              | nega.co              | om/tbs/tm            | 248/tm248.pd |
| Yp<br>preudcaudceconal     |        | A      |        | F       |       | E      | A A    | LAN / NB | rin     | -      | 1 - 1     | +     | 7                           |      | -    | 1       | <br>7_pr                                       | Hela<br>aximal AZ   | roshramat<br>Fc/A2Fd | in .                 | Pro-                 | udoomal      |
| SRV                        | 1/25/0 | 012140 | KALY . | D15,212 | SACY  | DYS215 | 112510 | DYS221   | D'15223 | DVS224 | LITE BILL | 240   | 240                         | 240  | DAT  | 0155240 | sucr                                           | awar                | suce                 | smax                 | 55                   |              |
| 21/17                      | 1815   | 2,000  | Sries  | 5/121   | SIPRO | STI22  | STIC   | -        | -       | -      | +         | Srber | 80235                       | SYZA | Stas | 27.167  |                                                |                     |                      |                      |                      |              |
| -                          | ei     | e -    | +      |         | 1     | 10 0   | . 9    | =        | 2       | 2      |           | 2 12  | 12                          | 22   | 2    | ล       | Control<br>Motiples                            | Costrol<br>Maliplex | Central<br>Multiples | Control<br>Multiples | Control<br>Multiples |              |







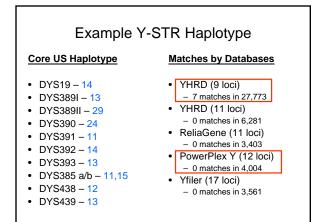


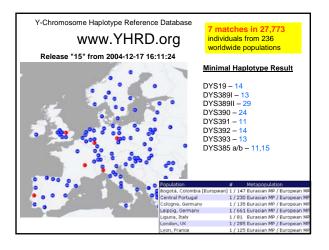


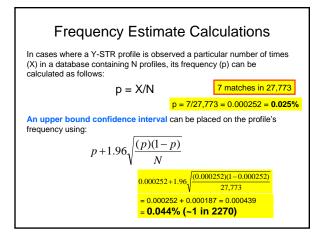




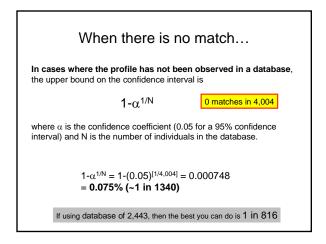




November 1, 2006


### Summary


- Mutation rates are similar to autosomal STRs (~0.2%) based on father-son studies
- Variant alleles are observed as in autosomal STRs due to flanking region mutations, etc.
- Regions of the Y-chromosome can be duplicated or deleted causing Y-STRs to be duplicated or deleted
- Careful primer design is important to avoid Xchromosome homology or Y-chromosome duplications

### Statistics with Y-STR Haplotypes


Most labs will probably go with the counting method (number of times a haplotype is observed in a database) as is typically done with mtDNA results











### The Meaning of a Y-Chromosome Match

Conservative statement for a match report:

The Y-STR profile of the crime sample matches the Y-STR profile of the suspect (at xxx number of loci examined). Therefore, we cannot exclude the suspect as being the donor of the crime sample. In addition, we cannot exclude all patrilineal related male relatives and an unknown number of unrelated males as being the donor of the crime sample.

### Difficult Questions...

• Which database(s) should be used for Y-STR profile frequency estimate determination?

- Are any of the current forensic Y-STR databases truly adequate for reliable estimations of Y-STR haplotype frequencies?
  - Some individuals share identical Y-STR haplotypes due to recurrent mutations, not relatedness...
  - Is the database a random collection reflecting Y-STR
  - haplotype frequencies of the population?
  - Is the Y-STR haplotype frequency relevant for the population of the suspect?

ssues raised by Peter de Knijff at his Promega meeting presentation (Oct 2004)

### Conclusions from Peter de Knijff

From his presentation at the Promega meeting (Oct 2004)

- A haplotype frequency taken from any Y-STR database should not be reported or seen as a random match probability
  - Because all male relatives have the same haplotype
  - Males can share haplotypes without being related

Database estimates are at most qualitative...

#### What Peter de Knijff Reports with a Y-STR Match From his presentation at the Promega meeting (Oct 2004)

- The Y-STR profile of the stain matches with the suspect.
- Therefore, the suspect cannot be excluded as the donor of the stain.
- On the basis of this DNA evidence, I can also not exclude all paternally related male relatives of the suspect as possible donors of this stain.
- In addition, an unknown number of males from the same region cannot be excluded. A more accurate answer can only be obtained if (1) we have detailed knowledge of the population structure of the region of interest, (2) the Y-STR frequencies therein are known, and (3) we have knowledge about the family structure of the suspect.

### Can Y-STR results be combined with autosomal STR information?

- Still subject to some debate among experts (most say "yes")
- Problem of different inheritance modes
- Multiply random match probability from the autosomal STR profile obtained with the upper bound confidence limit from the Y-STR haplotype frequency estimate