

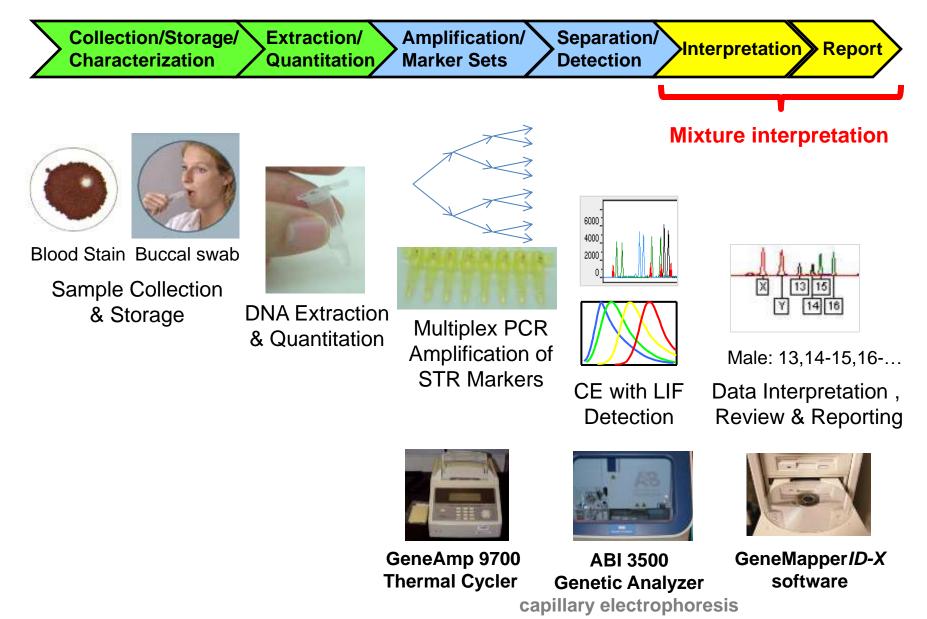
DNA Mixture Interpretation

John M. Butler, Ph.D.

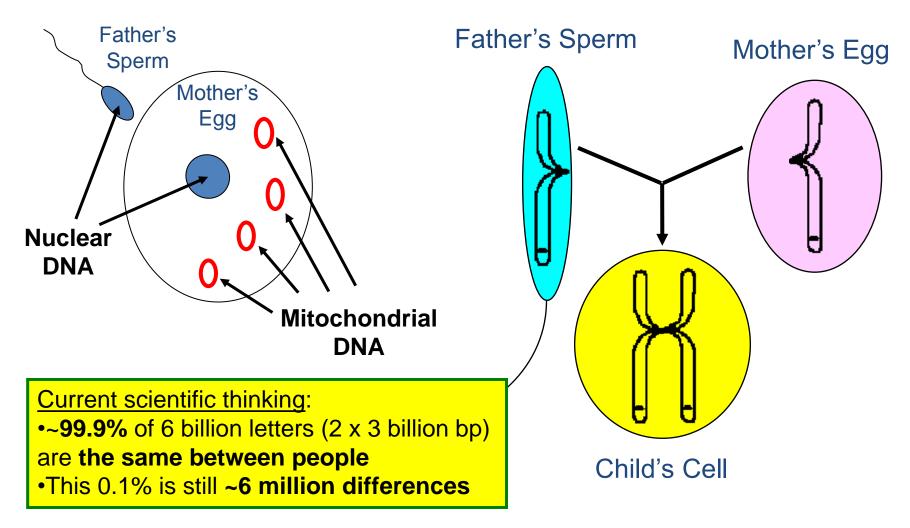
National Institute of Standards and Technology

Gaithersburg, Maryland

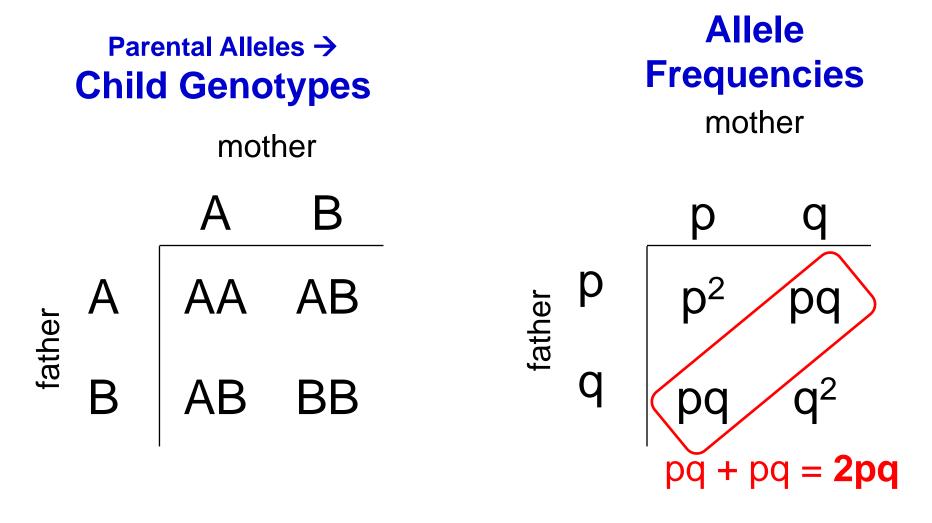
Acknowledgments and Disclaimers


Funding for research and training on forensic DNA performed by the NIST Applied Genetics Group has come from the National Institute of Justice and the NIST Law Enforcement Standards Office

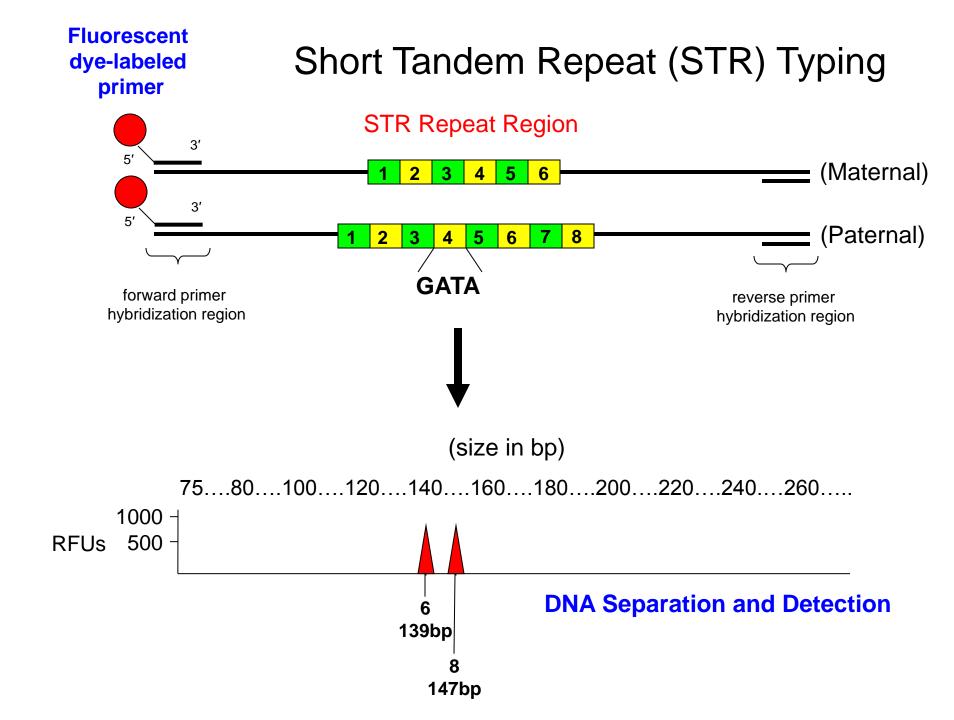
Although I chaired the SWGDAM Mixture Committee that produced the 2010 STR Interpretation Guidelines, I cannot speak for or on behalf of the Scientific Working Group on DNA Analysis Methods


Points of view are mine and do not necessarily represent the official position or policies of the US Department of Justice or the National Institute of Standards and Technology.

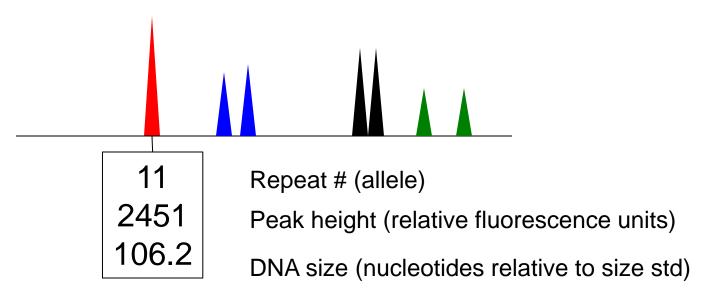
Certain commercial equipment, instruments and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that any of the materials, instruments or equipment identified are necessarily the best available for the purpose.


Steps in Forensic DNA Testing

Genetic Inheritance



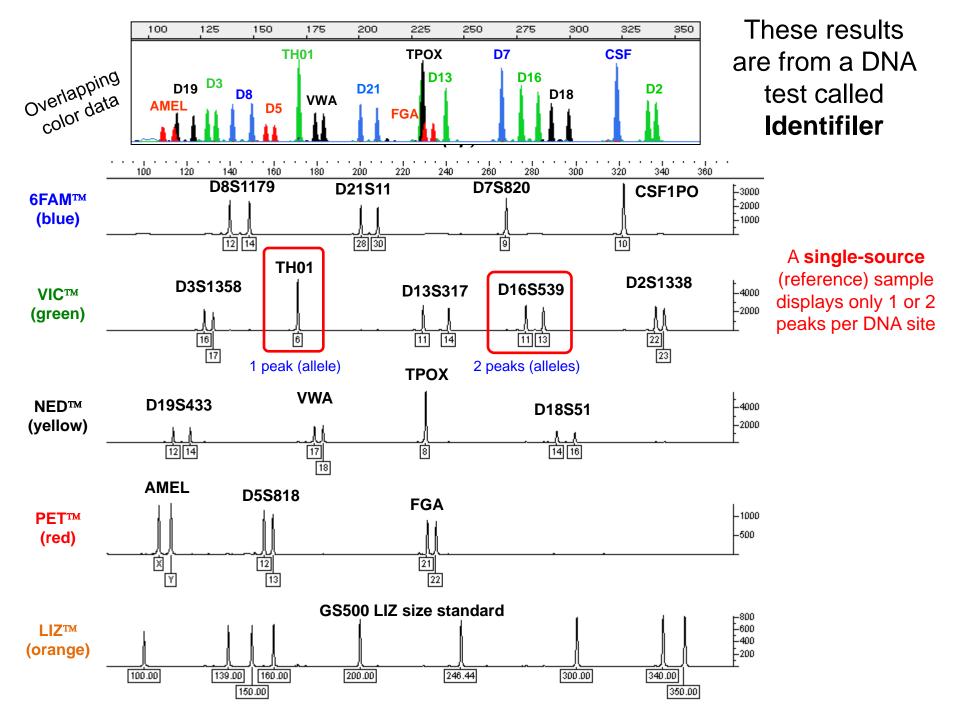
Father contributes: 22 autosomes (1 of each pair), X or **Y Mother contributes**: 22 autosomes (1 of each pair), X and **mtDNA** Punnett Square Showing Possible Genotype Combinations (from Genetic Inheritance)


Observed Data

Calculated Statistics

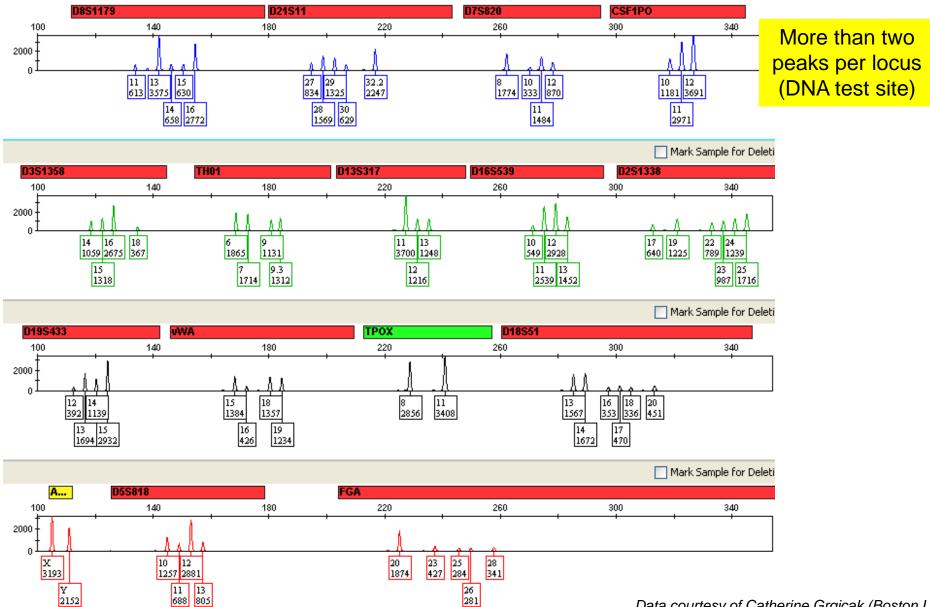
Understanding an STR Electropherogram (E-gram; EPG)

Peak height correlates to amount of DNA present (signal detected)
Peak position relates to the DNA size, which corresponds to STR allele repeat #
Peak color relates to the fluorescent dye label used to copy the specific DNA target



Alleles (peaks) are detected - but **Genotypes**, the specific combination of alleles, matter in terms of identifying individuals

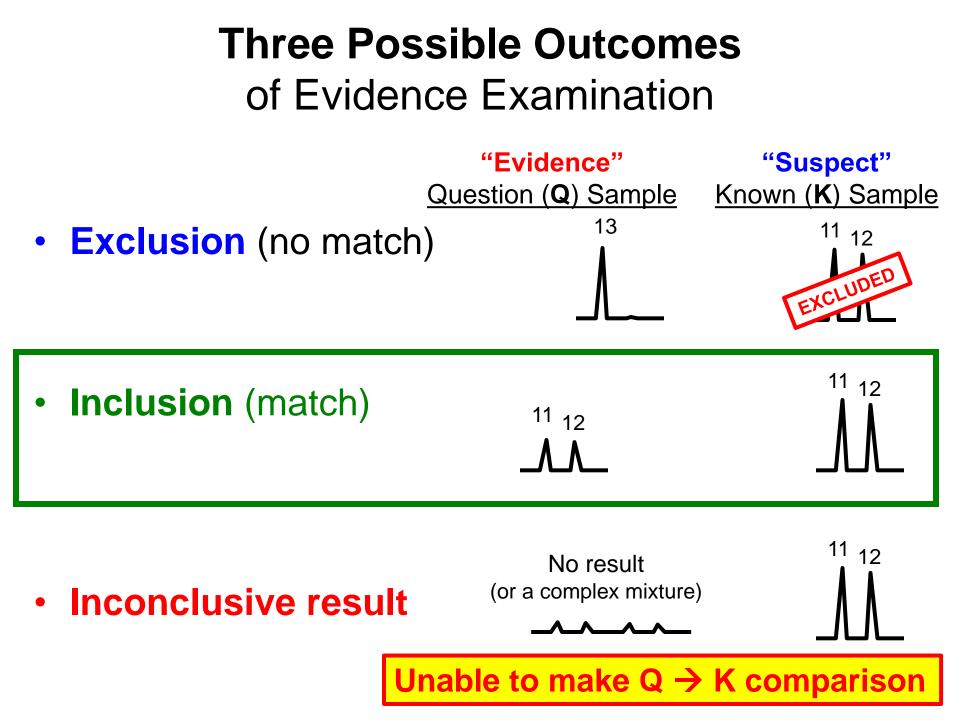
Single-Source Sample vs Mixture Results


Multiple possible combinations could have given rise to the mixture observed here

Identifiler DNA test

DNA Mixture Result

Controlled mixture of 4 individuals



Data courtesy of Catherine Grgicak (Boston U.)

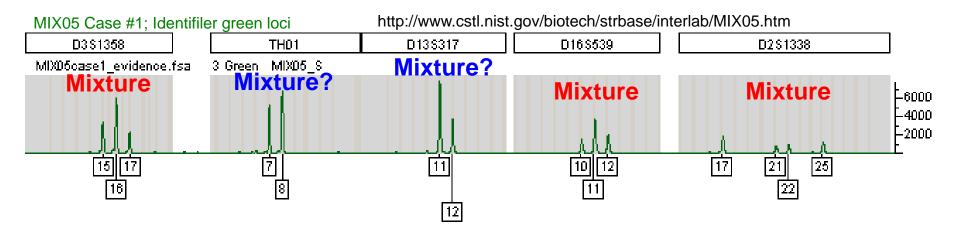
Different DNA Tests from Various STR Kits

Kit Name	# STR Loci Tested	Manufacturer	Why Used?
Identifiler, Identifiler Plus*	15 autosomal STRs (aSTRs) & amelogenin	Life Technologies (Applied Biosystems)	Covers the 13 core CODIS loci plus 2 extra
PowerPlex 16 PowerPlex 16 HS*	15 aSTRs & amelogenin	Promega Corporation	Covers the 13 core CODIS loci plus 2 extra
Profiler Plus & COfiler (2 different kits)	13 aSTRs [9 + 6 with 2 overlapping] & amelogenin	Life Technologies (Applied Biosystems)	Original kits used to provide 13 CODIS STRs
Yfiler	17 Y-chromosome STRs	Life Technologies (Applied Biosystems)	Male-specific DNA test
MiniFiler	8 aSTRs & amelogenin	Life Technologies (Applied Biosystems)	Smaller regions examined; helps with degraded DNA samples
GlobalFiler*	21 aSTRs , DYS391, Y indel, & amelogenin	Life Technologies (Applied Biosystems)	Addresses future US core loci
PowerPlex Fusion*	22 aSTRs , DYS391, & amelogenin	Promega Corporation	Addresses future US core loci

*Newer kits that contain improved PCR buffers and DNA polymerases to yield more sensitive results and recover data from difficult samples

DNA Mixture Basics

From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 154


- Mixtures arise when two or more individuals contribute to the sample being tested.
- Mixtures can be challenging to detect and interpret without extensive experience and careful training.
 Even more challenging with poor quality data when degraded DNA is present...
- Differential extraction can help distinguish male and female components of many sexual assault mixtures.

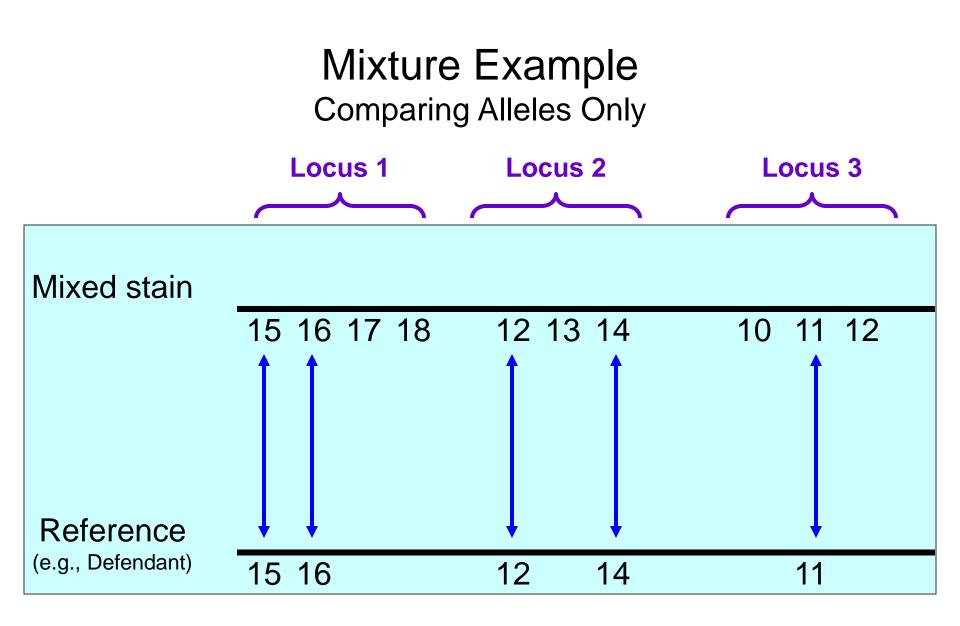
Y-chromosome markers can help here in some cases...

Mixtures: Issues and Challenges

From J.M. Butler (2005) Forensic DNA Typing, 2nd Edition, p. 155

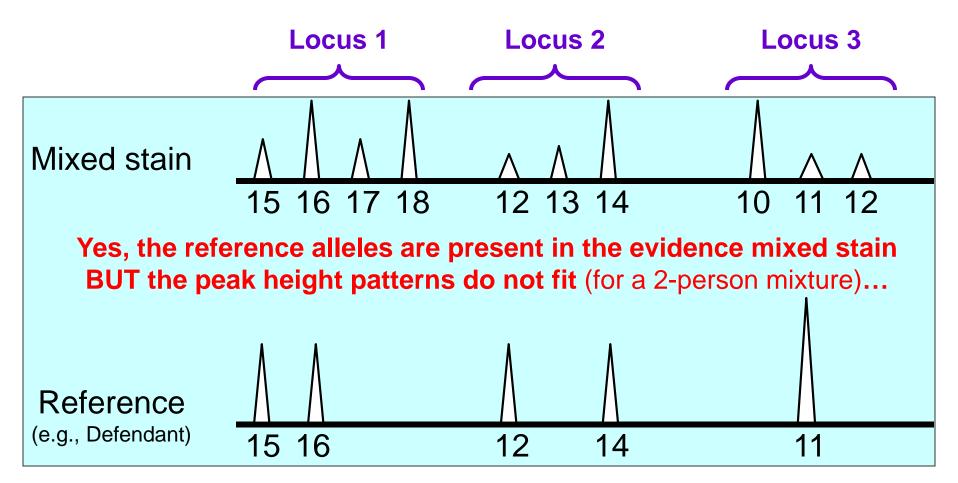
- The probability that a mixture will be detected improves with the use of more loci and genetic markers that have a high incidence of heterozygotes.
- The detectability of multiple DNA sources in a single sample relates to the ratio of DNA present from each source, the specific combinations of genotypes, and the total amount of DNA amplified.
- Some mixtures will not be as easily detectable as other mixtures.

Sources of DNA Mixtures

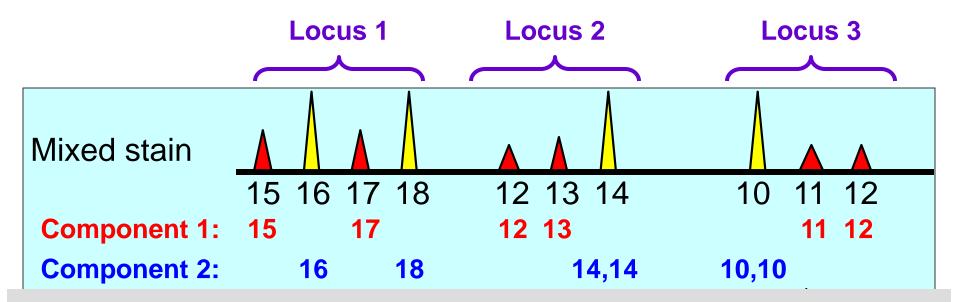

• Two (or more) individuals contribute to the biological evidence examined in a forensic case (e.g., sexual assault with victim and perpetrator or victim, consensual sexual partner, and perp)

Victim Reference and Spouse or Boyfriend Reference

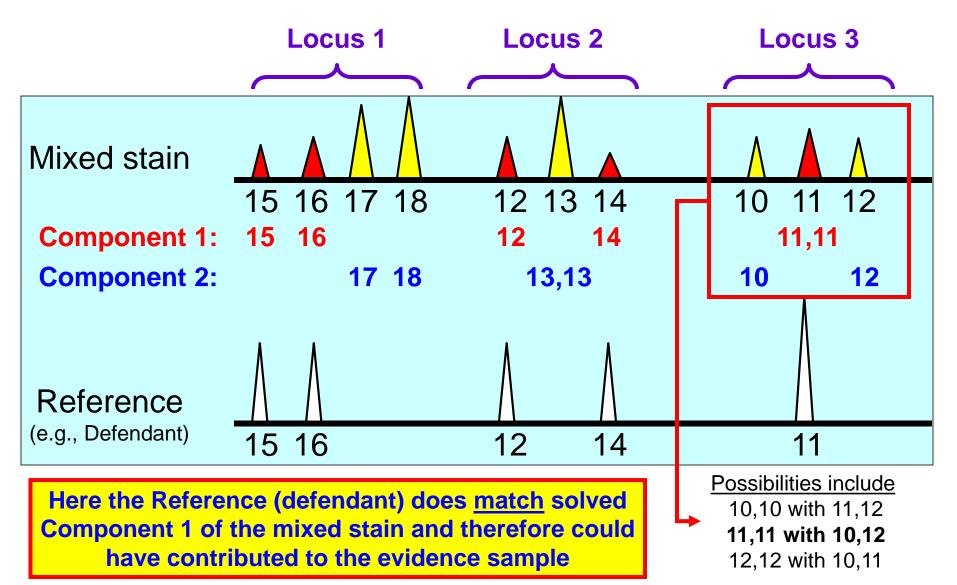
- Contamination of a single source sample from
 - evidence collection staff
 - laboratory staff handling the sample
 - Low-level DNA in reagents or PCR tubes or pipet tips


Examine Staff Profiles (Elimination Database), etc.

Reference elimination samples are useful in deciphering both situations due to possibility of intimate sample profile subtraction

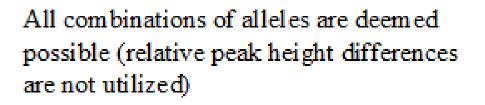

Mixture Example

Showing Importance of Using Peak Height Information


Mixture Example

Solving Components Prior to Comparison to Suspect Reference

Reference (defendant) does not match either component of the mixed stain and therefore could not have contributed to the evidence sample (assuming 2-contributors)


Mixture Example Different Evidence Sample...

Unrestricted vs. Restricted Genotype Combinations

Use of peak height information to select only certain combinations

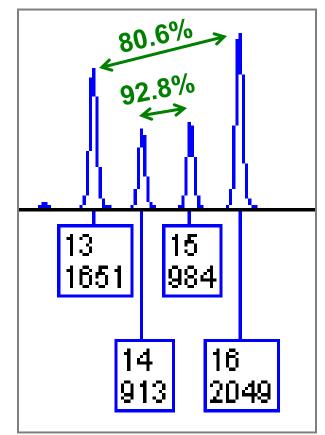
<u>Unrestricted</u>

AB + AC + AD + BC + BD + CD

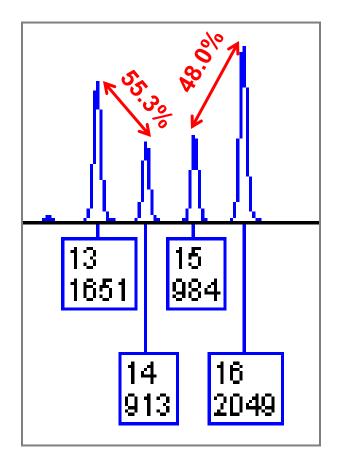
Restricted

А

Based on relative peak heights, alleles are paired only where specific combinations of alleles are deemed possible

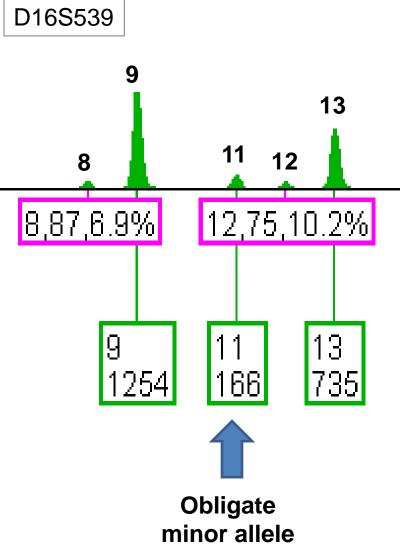

AB + AC + AD + BC + BD + CD

http://www.swgdam.org/Interpretation_Guidelines_January_2010.pdf


Peak Height Ratios Are Used in Mixture Component Deconvolution (Restricting Possible Genotypes)

Better Explanation of the Data

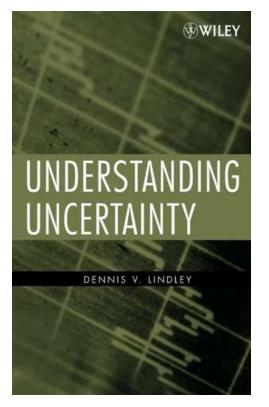
(assuming 2 contributors)



13,14 and 15,16

Uncertainty with Possible Genotypes

Genotype 9,13 is likely the major contributor (assuming a 2-person mixture)

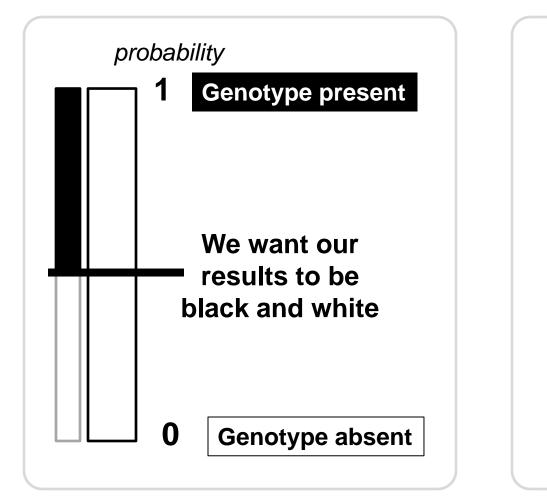

The 11 allele is at 166 RFU (above a 150 ST)

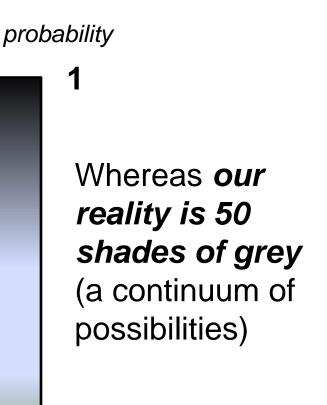
The "12" peak in the stutter position is only slightly below our stutter threshold of 10.4%


If we assume 8 and 12 are stutter peaks, then the possible genotypes of the minor contributor can be **9,11** or **11,11** or **11,13**

If we also include the 8 and 12 alleles in creating our genotype combinations, then the minor contributor possible genotypes expands to include **8,11** and **11,12**

Whatever way uncertainty is approached, probability is the *only* sound way to think about it. Understanding Uncertainty, p. 71

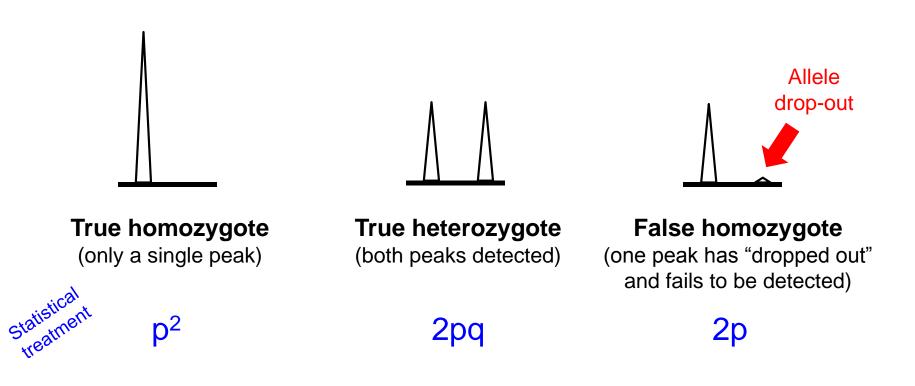

- Dennis Lindley



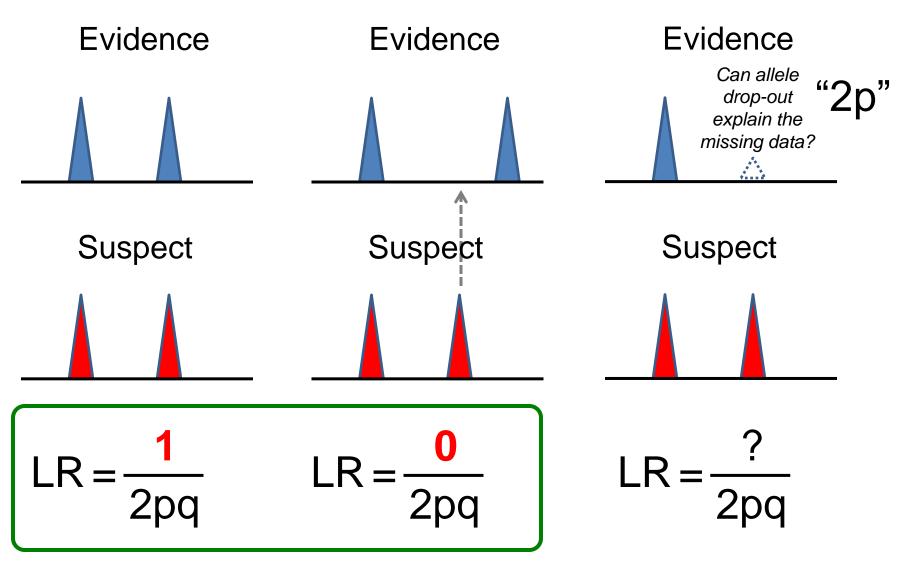
Wiley (2007)

Adapted from a slide by Peter Gill, Rome meeting, April 27-28, 2012: The hidden side of DNA profiles: artifacts, errors and uncertain evidence

Approaches to Data Interpretation: Binary vs Probabilistic

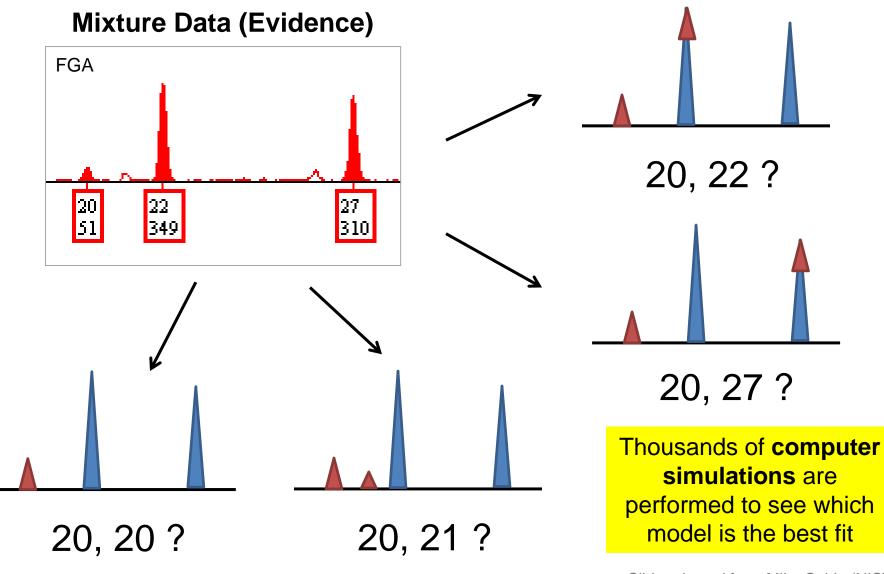

Binary Approach

Probabilistic Approach


Π

Allele Drop-out

 If because of chemistry events sometimes associated with low levels of DNA (termed "stochastic effects"), one of the STR alleles "drop-out" and is not detected, then our sample at that locus looks like a homozygote instead of the heterozygote that it really is



Likelihood Ratios for Different Possibilities

Binary LR approach (either 0 or 1)

Probabilistic Genotyping Involves Exploring Multiple Possibilities to See Which One Best Fits the Data

Slide adapted from Mike Coble (NIST)

SWGDAM Interpretation Guidelines

SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories

SWGDAM = Scientific Working Group on DNA Analysis Methods (<u>http://www.swgdam.org/</u>)

- Approved January 14, 2010
- Available at: <u>http://www.fbi.gov/about-us/lab/biometric-analysis/codis/swgdam.pdf</u> or <u>http://www.swgdam.org/Interpretation_Guidelines_January_2010.pdf</u>

SWGDAM Mixture Interpretation Guidelines (2010)

- Provide guidance to labs for interpreting singlesource and two-person mixtures
- NOT intended for Low Template DNA or >2 person mixtures
- Guidelines NOT Standards
- Laboratories are not required to follow, but guidelines are STRONGLY RECOMMENDED
- Require statistics when DNA inclusions are made (SWGDAM 2010 section 4.1)

Stats Required for Inclusions

SWGDAM Interpretation Guideline 4.1:

"The laboratory <u>must</u> perform statistical analysis in support of any inclusion that is determined to be relevant in the context of a case, irrespective of the number of alleles detected and the quantitative value of the statistical analysis."

Buckleton & Curran (2008): "There is a considerable aura to DNA evidence. Because of this aura it is vital that weak evidence is correctly represented as weak or not presented at all."

Buckleton, J. and Curran, J. (2008) A discussion of the merits of random man not excluded and likelihood ratios. *Forensic Sci. Int. Genet.* 2: 343-348.

FBI DNA Advisory Board (DAB) Recommendations on Statistics February 23, 2000

"The DAB finds either one or both PE or LR calculations acceptable and strongly recommends that one or both calculations be carried out whenever feasible and a mixture is indicated"

- Probability of exclusion (PE)
 - Devlin, B. (1993) Forensic inference from genetic markers. Statistical Methods in Medical Research, 2, 241–262.
- Likelihood ratios (LR)
 - Evett, I. W. and Weir, B. S. (1998) *Interpreting DNA Evidence*. Sinauer, Sunderland, Massachusetts.

Forensic Sci. Comm. 2(3); available on-line at http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/july2000/dnastat.htm

Statistical Approaches with Mixtures

See Ladd et al. (2001) Croat Med J. 42:244-246; SWGDAM (2010) section 5

- Random Match Probability or RMP (after inferring genotypes of contributors) – Separate major and minor components into individual profiles and compute the random match probability estimate as if a component was from a single source
- 2. Combined Probability of Exclusion/Inclusion CPE/CPI (RMNE) – Calculation of the probability that a random (unrelated) person would be excluded/included as a contributor to the observed DNA mixture RMNE = Random Man Not Excluded (same as CPI) CPE = Combined Probability of Exclusion (CPE = 1 – CPI) CPI = Combined Probability of Inclusion (CPI = 1 – CPE)
- 3. Likelihood Ratio (LR) Compares the probability of observing the mixture data under two alternative hypotheses; in its simplest form LR = 1/RMP

$$LR = \frac{\Pr(E \mid H_1)}{\Pr(E \mid H_2)}$$

Assumptions for CPE/CPI Approach

- There is no allele dropout (i.e., all alleles are above stochastic threshold) – low-level mixtures can not reliably be treated with CPE
- All contributors are from the same racial group (i.e., you use the same allele frequencies for the calculations)
- All contributors are unrelated
- Peak height differences between various components are irrelevant (i.e., component deconvolution not needed) – this may not convey all information from the available sample data...

Coupling of Statistics and Interpretation

- The CPE/CPI approach for reporting an inclusionary statistic requires that all alleles be observed in the evidence sample
- If allele drop-out is suspected at a locus, then any allele is possible and the probability of inclusion goes to 100%
 -- in other words, the locus is effectively dropped from consideration for statistical purposes
- If alleles are seen below the established stochastic threshold, then the locus is typically eliminated ("INC" – declared inconclusive) in many current lab SOPs

Overview of Two Thresholds

Called Peak

(Greater confidence a sister allele has not dropped out)

Example values

(empirically determined based on own internal validation)

200 RFUs

- Stochastic Threshold

The value above which it is reasonable to assume that allelic dropout of a sister allele has not occurred

Analytical Threshold

Minimum threshold for data comparison and peak detection in the DNA typing process **Noise**

From Butler, J.M. (2010) Fundamentals of Forensic DNA Typing. Elsevier Academic Press: San Diego.

ha sa kalila sh


Called Peak (Cannot be confident dropout of a sister allele did not occur)

RFU = relative fluorescence units and is the measure of signal detected

30 RFUs

Peak not considered reliable

Yfiler (Y-STR) Data from a Knife Handle (1970s post-conviction case)

Comparison between Evidence (Q sample) and Defendant (K sample)

	Report of Laboratory Examination										
							2/25/200	9			
AGENCY CASE NO:	1										
Table 1	Y-Filer										
Sample Name	DYS456	DY\$3891	DYS390	DY538911	DYS458	DYS19	DYS385a/	DY5393	DYS391	DYS439	DY8635
Swabbings: Black Handle of Folding Knife	15	13, 14	24	30, 31	15, 16	NR	31, 13	13,14	9, 10	NR.	NR

DYS392 Y GATA DYS437 DYS438 DYS448 H4. Sw: 11 NR 13 NR NR Fol Defendant 17 13 26 30 15 15 11, 15 13 10 10 22 11 12 14 10 20

= No Result

The results listed in the table do not depict intensity differences.

The lab initially issued a report stating that the results excluded the defendant.

Several months later, the lab changed its assessment and issued a new report:

"The partial Y-STR profile obtained ... is a mixture consistent with originating from two males. No determination can be made as to whether or not [Defendant] is a contributor to this mixture."

Uncertainty in Evidence Result Leads to "Inconclusive" Report

- In my opinion, a high degree of uncertainty in the number of contributors (Y-STR loci with multiple alleles) and the true DNA types (due to extensive allele and locus dropout) makes comparison of this sample to ANY reference sample problematic
- If evidence cannot be compared due to poor quality data, then the defendant cannot be excluded (and potentially exonerated) based on DNA results...
- Poor quality DNA data (as well as potential, inadvertent contamination) may present challenges with reaching any conclusions on older Innocence Project cases

New Statistical Tools/Software for Mixtures

- Lab Retriever (David Balding \rightarrow Norah Rudin et al.)
 - Uses likelihood ratios (LRs) and probability of dropout [Pr(D) or P(Do)]
- **FST** Forensic Statistical Tool (NYC OCME)
 - Uses LRs and empirically determined Pr(D) based on DNA quantity
- Armed Xpert (USACIL → Niche Vision)
 - Originally developed by US Army Crime Lab (USACIL)
 - Performs calculations typically manually done by analysts
- **TrueAllele** (Mark Perlin/Cybergenetics)
 - Uses probabilistic genotyping approach with LRs

Scientific Collaboration, Innovation & Education Group

Lab Retriever Program

Beta-version is available for free download from www.scieg.org

Scientific Article - describes the math and statistical model

Balding, D.J., & Buckleton, J. (2009) Interpreting low template DNA profiles. *Forensic Science International: Genetics, 4,* 1-10.

David J. Balding **, John Buckleton*

⁵Department of Applementings and Platin Health, Importal Callege, II Mary's Campus, Medial Place, London M2 197; UK ⁹DB Private High SND C. Auchimal, New Student

Credits:

Based on the original work of:

- David Balding
- John Buckleton

Research and development:

- Keith Inman
- Kirk Lohmueller
- Norah Rudin

Programmers:

- Ken Cheng
- Luke Inman-Semerau

David Balding likeLTD – program written in R (computer language)

https://sites.google.com/site/baldingstatisticalgenetics /software/likeltd-r-forensic-dna-r-code

Norah Rudin and colleagues – prepare a GUI for likeLTD to make it more user-friendly

http://www.scieg.org/lab_retriever.html

FST (Forensic Statistical Tool)

Currently undergoing a Frye admissibility hearing in NYC

Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in

Adele A. Mitchell^{*}, Jeannie Tamariz, Kathleen O'Connell, Nubia Ducasse, Zoran Budimlija, Mechthild Prinz, Theresa Caragine

Department of Forensic Biology, Office of Chief Medical Examiner of The City of New York, 421 E 26th Street, New York, NY 10016, United States

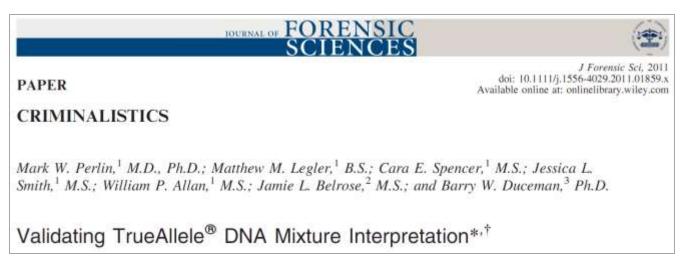
 "...FST does not deconvolute DNA mixtures, but simply computes a LR for scenarios specified by the user, allowing for mismatches between contributors' profiles and the DNA alleles labeled in the mixtures. The mismatches are accounted for by incorporating drop-out and drop-in probabilities in the LR calculation. While FST uses empirically determined drop-out and drop-in rates, [other programs] require the user to specify dropout and drop-in probabilities..."

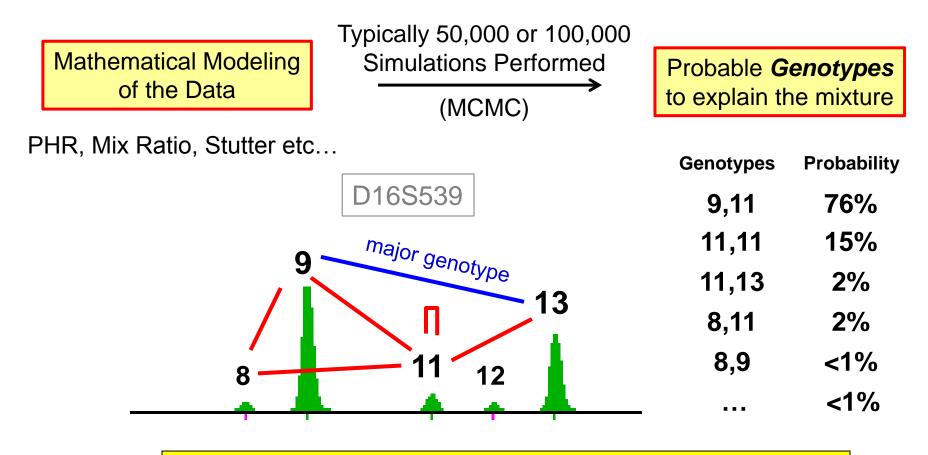
http://www.nyc.gov/html/ocme/html/hss/hssservices_provided.shtml

Armed Xpert

http://www.armedxpert.com/

http://www.nichevision.com/


- Developed by the US Army Crime Lab (USACIL) initially as a Virtual Basic program called "DNA_DataAnalysis"
- Enables RMP, CPI, and LR calculations for 2-person and 3-person mixtures
- Plan to incorporate probability of drop-out models developed by John Buckleton (New Zealand)


True Allele Casework

http://www.cybgen.com/systems/casework.shtml

- Performs thousands of simulations to model mixture data
- Calculates a combined likelihood ratio
- A commercial product so not all of the mathematical details have been published
- Has been admitted in several states including PA and CA
- Validation work published with NYSP (JFS Nov 2011)

Probabilistic Modeling of TrueAllele

Quantitative computer interpretation using numerous Markov Chain Monte Carlo (MCMC) simulations
Models peak uncertainty and infers possible genotypes
Results are presented as the Combined LR

DNA Case Example

- Portions of redacted results and lab report were kindly provided by Olga Akselrod (Innocence Project)
- Three pieces of evidence (mixtures) plus victim and defendant DNA profiles to enable Q→K comparisons
 - Fingernail clippings (right hand & left hand) and jeans
- Testing was performed using MiniFiler
 - 8 STR loci + amelogenin (sex-typing marker)
 - MiniFiler is a miniSTR test that aids recovery of results from damaged DNA because it examines smaller portions of the DNA molecules than other STR typing kits
- Statistical analysis of mixtures were performed using CPI (combined probability of inclusion) and FBI Popstats computer program

Lab Report Wording

Focus of next slide

The Minifiler DNA profile obtained from the right hand fingernail clippings (Item #2.16) is a mixture of DNA from at least three individuals, including at least one male and one female individual.

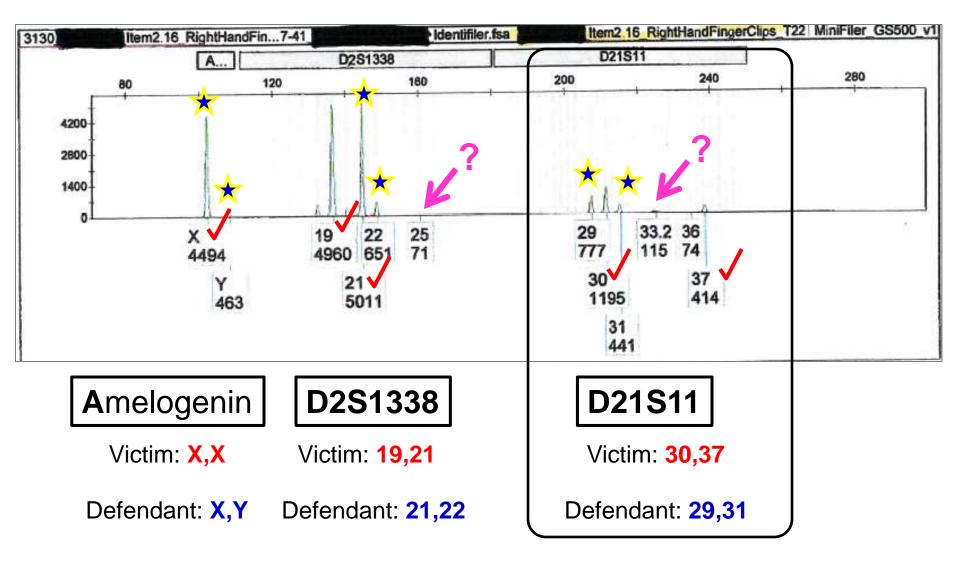
The DNA profile of (Item #5) cannot be excluded from the DNA in the mixture. For the loci D2IS11, D7S820, CSF1PO, D13S317, D16S539, D2S1338, D18S51, and FGA, the probability of randomly selecting an unrelated individual as a possible contributor to the DNA profile of the mixture at the genetic loci above is at least 1 in 1,965 for U.S. individuals. Therefore, cannot be excluded as a contributor to the Minifiler genetic material in this specimen.

The Minifiler DNA profile obtained from the left hand fingernail clippings (Item #2.17) is a mixture of DNA from at least three individuals.

The DNA profile of **Econom** (Item #5) cannot be excluded from the DNA in the mixture. For the loci D7S820, CSF1PO, D13S317, D16S539, D2S1338, D18S51, and FGA, the probability of randomly selecting an unrelated individual as a possible contributor to the DNA profile of the mixture at the genetic loci above is at least 1 in 358 for U.S. individuals. Therefore, **Econom** cannot be excluded as a contributor to the Minifiler genetic material in this specimen.

The Minifiler DNA profile obtained from the jeans (Item #2.7) is a mixture of DNA from at least four individuals. The DNA profile of **Constant** (Item #5) cannot be excluded from the DNA in the mixture. For the loci D7S820, CSFIPO, D16S539, D18S51, and FGA, the probability of randomly selecting an unrelated individual as a possible contributor to the DNA profile of the mixture at the genetic loci above is at least 1 in 16 for U.S. individuals. Therefore, **Constant** cannot be excluded as a contributor to the Minifiler genetic material in this specimen.

> Right hand fingernail clipping: **1 in 1965** (8 loci used) Left hand fingernail clipping: **1 in 358** (7 loci used) Jeans: **1 in 16** (5 loci used)


Breaking Down a Portion of the Report

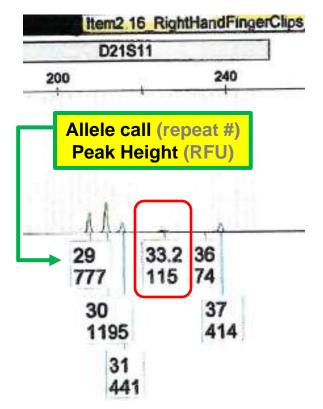
The Minifiler DNA profile obtained from the right hand fingernail clippings (Item #2.16) is a mixture of DNA from at least three individuals, including at least one male and one female individual.

The DNA profile of **DEFENDANT** (Item #5) **cannot be excluded** from the DNA in the mixture.

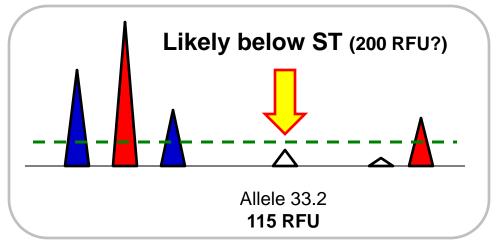
For the [MiniFiler] loci D21S11, ..., **the probability of randomly selecting an unrelated individual as a possible contributor** to the DNA profile of the mixture at the [MiniFiler loci] is <u>at least</u> 1 in 1,965 for U.S. individuals. ...

MiniFiler Green Channel Right Hand Fingernail Clippings (Item #2.16)

Lab Report Data


				Victim	
ITEM	Report #1 Item #2.16 Right Hand Fingernail Clippings Minifiler	Report #1 Item #2.17 Left Hand Fingernail Clippings Minifiler	Report #1 Item #2.7 Jeans Minifiler	Report #1 Item #2.36 Dried Red Stain on Bra From Identifiler	Defendant Item #5 Known Identifiler
D8S1179	NT	NT	NT	14,15	14,14
D21511	29,30,31,33.2,37	30,31,37	27,29,30,31.2,37	30,37	29,31
D7S820	8,9,10,11	8,10,11	8,10,11	10,11	8,11
CSFIPO	7,8,10,11	7,10,11,12	7,8,10,11,12	10,11	7,10
D3S1358	NT	NT	NT	16,17	15,15
TH01	NT	NT	NT	7,9.3	8,9
D138317	11,12,13	11,12,13	10,12,13	12,13	11,11
D168539	9,11,12,13	9,11,12,13	9,11,12,13	11,12	9,13
D2S1338	19,21,22	17,19,21,22	16,19,21,23,24*	19,21	21,22
the second s	NT	NT	NT	14,15	12.2,13
D198433	NT	NT	NT	16,17	14,16
vWA	NT	NT	NT	8,11	9,9
TPOX		10,15,16,17,20	10,12,14,15,16,17,19	15,16	10,15
D18851	10,15,16,20		X,Y	X,X	X,Y
Amelo.	X,Y	X,Y	NT	11,12	12,12
D5S818 FGA	NT 20,21,23,24,25	NT 20,23,24	20,21,23,24	20,24	20,23

Item #2.16 (Right Hand Fingernail Clippings)


Information in Report Table **D21S11**: 29, 30, 31, 33.2, 37*

Electropherogram (mixture data observed)

Victim: 30, 37 Defendant: 29, 31

Graphical representation of DNA data at D21S11

Based on results at this single locus, we can assume at least three individuals contributed to the DNA results because there are more than 4 alleles

Source of the Numbers for Right Hand Fingernail Clippings

Allele Frequency

	Allele	CAU	BLK	SWH	
. 1	29	0.1811	0.1899	0.2044	
1	30	0.2321	0.1788	0.3301	
1	31	0.0714	0.0922	0 069	
1	33.2	0.0306	0.0335	0.0419	
1	37	0.0128	0.014	0.0123	

Using D21S11 alleles 29, 30, 31, 33.2, and 37 in statistical calculations

Population Group	CPI Stats Calculated
Caucasian (CAU)	1 in 26,080
Black (BLK)	1 in 1,965
Southwest Hispanic (SWH)	1 in 18,440

Popstats 5.7.4 DNA Profile

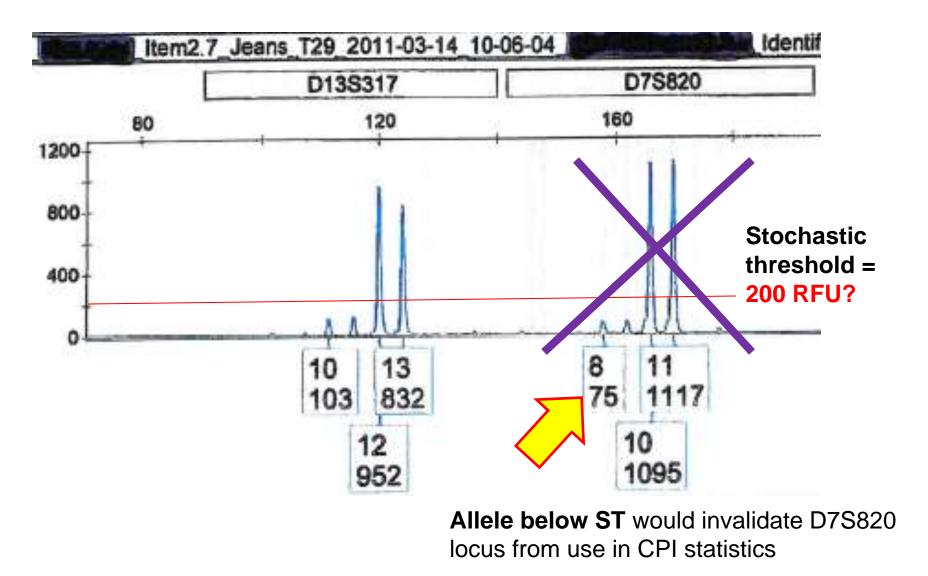
Locus

D2151

D2151

D21S1

D21S1


D21S1

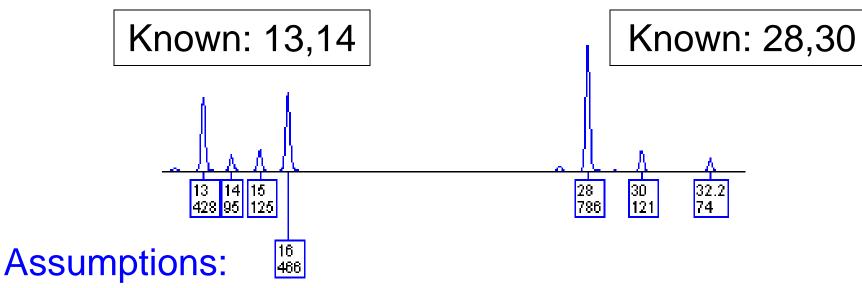
			Pops	tats 5.7.4 I
Forensic	Mixture C	ase: Prob		f Inclusion
Database:				opdata\FBI\ST
Specimen:		Refei	rence	
ONA Analy:	st:	1	1	
Lab ID:			1	
Date:		7/8/2	2:22:19PM	
Page 1 of	1			
			Allele Fre	quency
Locus	Allele	CAU	BLK	SWH
D21S11	29	0.1811	0.1899	0.2044
D21511	30	0.2321	0,1788	0.3301
D21511	31	0.0714	0.0922	0.069
D21S11	33.2	0.0306	0.0335	0.0419
D21511	37	0.0128	0.014	0.0123
D75820	в	0.1626	0.1738	0.0981
D7S820	9	0.1478	0.1571	0.0479
D7S820	10	0.2906	0.3238	0.3062
D75820	11	0,202	0,2238	0 2895
CSF1PO	7	0.0123	0.0429	0.012
CSF1PO	8	0.0123	0.0857	0.012
CSFIPO	10	0,2537	0.2714	0 2536
CSF1PO	11	0,3005	0.2048	0.2656
D13S317	11	0,3189	0.2374	0.202
D13S317	12	0 3087	0 4832	0.2168
D138317	13	0 1097	01257	0.1379
D16S539	9	0 104	0 1986	0 0793
D16S539	11	0 2723	0 2943	0.3149
D16S539	12	0 3391	01866	0.2861
D165539	13	D 1634	0 1651	0 1034
D2S1338	19	0 1447	0 1377	0 2605
D2S1338	21	0.0197	01526	0.0176
D231338	22	0.0296	0 1377	0.0704
D18551	10	0 0128	0 0139	0.0123
D18S51	15	0 1276	0 1667	0.1379
D18551	16	0 1071	01889	0.1158
D18S51	20	0 0255	0.0556	0.0172
FGA	20	0 1454	0 0722	0.0714
FGA	21	0 1735	0 1 2 5	0.1305
FGA	23	01582	0125	0.1404
FGA	24	0 1378	01861	0.1256
FGA	25	0 0689	0.1	0.1379
Amelogenia	n X			
Talling The				

Amelogenin Y

CAU probability of inclusion $3.834\pm05 = 1$ in 2.608 ± 04 BLK probability of inclusion $5.089\pm04 = 1$ in 1.965 ± 03 SWN probability of inclusion $5.423\pm05 = 1$ in 1.844 ± 04

MiniFiler Blue Loci for Jeans (Item #2.7)

Forensic M Database:	lixture (ability of	ats 5.7.4 DN Inclusion data\FBI\STR		CPI			ulations
Specimen:			rence				for the	e lea	ns
DNA Analys	st:	(Martine							
Lab ID:		-							
Date:		7/8/	2011					Downa	- A- E 7 A
Page 1 of	1		111111				1	-opsi	ats 5.7.4
			Allele Fre	Forensic	Mixture	Case: P			Inclusion
	Allela	CAU	BLK	B-tobar	_				
D7S820	8	0 1626	0 1738	Database		F	: \Popst	acs\Pop	odata\FBI\S1
D75820	10	0 2906	0 3238	Specimen		R	eference	e	
D7S820	11	0 202	0 2238	DND 81	iline i			1.5	
CSF1PO CSF1PO	7	0 01 23	0 0429	DNA Anal	yst:		Contraction of the second s		
CSFIPO	10	0 0123 0 2537	0 0857	Lab ID:					
CSFIPO	11	0 2005	0 2048			-	in in all		0.07.17DM
CSFIPO	12	0 3251	0 3	Date:		7	/8/2011		2:27:37PM
D16S539	9	0 104	0 1986	Page 1 o	£ 1				
D16S539	in	0 2723	0 2943	rage + u					
D16S539	12	0 3391	0 1866				All	ele Freq	nency
D16S539	13	0 1634	0 1651						
D18S51	10	0 0128	0 0139	1	Alleie	CAU	D	LK	SWH
D18S51	12	0 1276	0 0583	Locus				1111	
D18551	14	0 1735	0 0639	D7S820	8	016	26 0	1738	0.0981
D18S51	15	0 1276	0 1667	D75820	10	0 290	× 0	3238	0.3062
D18S51	16	0 1071	0 1889		1.575	0 290	0 0	3230	
D18S51	17	0 1556	0 1639	D7S820	11	0 203	2 0	2238	0.2895
D18S51	19	0 0357	0 0778	0.037					0.1343253.53753
FGA	20	0 1454	0 0722	0.0714	D7S82) anns	are to	hav	a haan
FGA	21	0 1735	0125	0.1305		o appe			C DCCII
FGA	23	0 1582	0125	0.1404	cod in (tictic		Iculation
FGA	24	0 1378	0 1861	0.1256	260 III (JEI 210	าเวเเต	alua	iculation
Amelogenin									
Amelogenin	1 Y								


CAU probability of inclusion 5.913E-02 = 1 in 1.691E+01BLK probability of inclusion 4.468E-02 = 1 in 2.238E+01SWH probability of inclusion 3.084E-02 = 1 in 3.243E+01

Only 1 in 16.9 Caucasians

Where Can Potential Errors Occur in DNA Interpretation?

- Incorrect inclusion of an innocent person using allele drop-out as a reason for mismatch between evidence and suspect with a CPI approach
- Inclusion of loci in CPI calculations with alleles below stochastic threshold (CPI requires all alleles to be detected) could lead to an inflation of the match statistic
- Setting thresholds too high and thus losing relevant data that could be used to exclude
- Use of p² with single peaks (assuming genotype is a homozygote) instead of 2p (allowing for allele drop-out) will falsely inflate statistics
- Failure to exclude when alleles are present but genotypes do not fit

Is the Known Individual Included or Excluded?

- 1) 2 contributors and all data are present \rightarrow
- 2) 1 major and 1 minor contributor \rightarrow
- 3) Major must have 13,16 and 28,28 genotypes and
- 4) Minor must have 14,15 and 30,32.2 genotypes

Based on these assumptions, the individual is excluded

Genotypes are excluded even if alleles are included

Slide from Charlotte Word (consultant)

Different Experts→ Different Opinions

- Are the experts asking/answering the same question?
- Are they using the same information and data?
- Are they using the same interpretation methods?
- Are they using good scientific practices?
- Any possibility of bias?
- Are the differences meaningful or trivial?

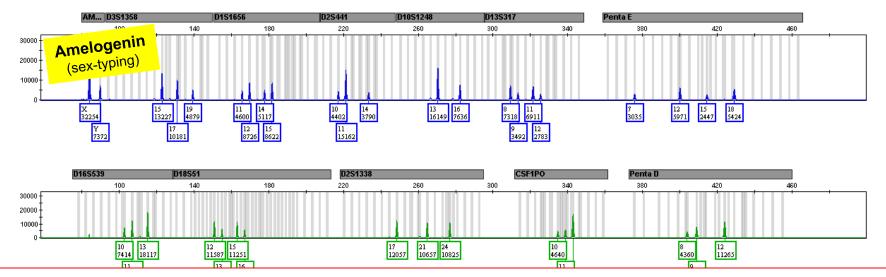
Some Thoughts on the Future...

PCR amplification

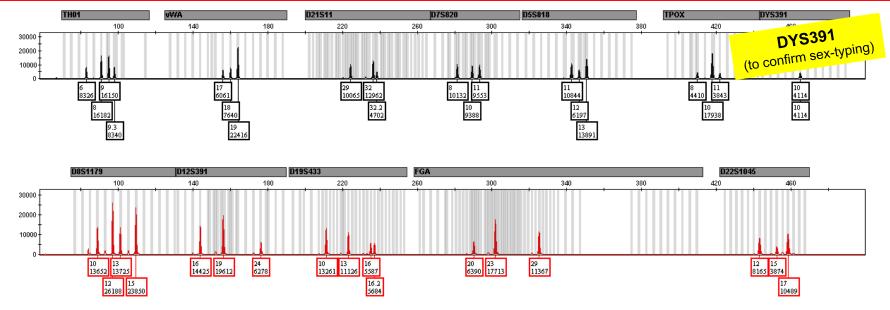
- Faster enzymes to enable rapid PCR
- More robust enzymes and master mixes that work better

Instrumentation

- More dye colors to aid in analyzing more loci simultaneously
- Rapid, integrated devices
- Alternatives to capillary electrophoresis: next-generation sequencing


Marker systems

- Expanding sets of STR loci for growing DNA databases
- Other marker systems: SNPs, InDels, X-STRs, RM Y-STRs
- Body fluid identification using other molecules such as RNA
- Phenotyping for external visible characteristics
- Privacy challenges with additional genome information


Data interpretation

- Probabilistic genotyping for low-level DNA and mixture interpretation
- Probability of dropout incorporated into DNA data interpretation

DNA Mixture Detected with PowerPlex Fusion (24plex STR kit)

22 autosomal STR loci need to be interpreted...(+50% over current 15 STRs)

Size standard not shown

Data courtesy of Becky Hill (NIST)

New Efforts to Improve DNA Interpretation (especially low-level DNA and mixtures)

December 2012 – Forensic Science International: Genetics, volume 6, issue 6

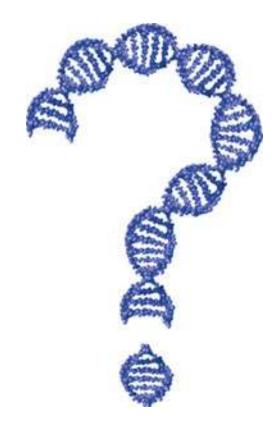
Approaches to mixture data interpretation is in a state of change throughout the forensic DNA community

April 12, 2013 Webcast

http://www.nist.gov/oles/forensics/dna-analysttraining-on-mixture-interpretation.cfm

- 8-hours of DNA mixture interpretation training
- 11 presentations from five different presenters
 - John Butler, Mike Coble, Robin Cotton, Bruce Heidebrecht, Charlotte Word
- 20 poll questions asked via SurveyMonkey (>600 participated)
 Addressed additional questions sent via email or Twitter
- >1000 participants (almost entire U.S. represented and >10 countries)
- Will be available for viewing or download (by early May) for at least six months (storage costs may limit longer-term storage)

Acknowledgments


Case Examples and Input on This Presentation

- Olga Akselrod (Innocence Project)
- Jennifer Friedman (Los Angeles Public Defender's Office)

Slides and Discussions on DNA Mixtures

- Mike Coble (NIST Applied Genetics Group)
- Robin Cotton & Catherine Grgicak (Boston U.)
- Bruce Heidebrecht (Maryland State Police)
- Charlotte Word (consultant)

Contact info: john.butler@nist.gov 301-975-4049

