## Forensic DNA Mixture Interpretation

# Probabilistic Genotyping 

MAFS Workshop

Milwaukee, WI
September 25, 2012


Dr. Michael D. Coble National Institute of
Standards and Technology
michael.coble@nist.gov

## Is there a way forward?

## Three Questions

- What were the last words of Julius Caesar before he died?
- Et tu, Brute? Then fall Caesar!
- What is the capital of Bangladesh?
- Dhaka


## Three Questions

- How many people are in this mixture?


## All alleles are above ST

'



$1 0 0 \longdiv { }$

$\square$ Mark Sample for Deleti


## Do you have any uncertainty in your answer?

Whatever way uncertainty is approached, probability is the only sound way to think about it.


## -Dennis Lindley

## Two-Person Mixtures

Observed profile
MHA M A ^ـ A A A ^ــ

## 14 total combinations

## Observed profile

## 6 alleles

## 150 total combinations

All heterozygotes and non-overlapping alleles

## 5 alleles

Two heterozygotes and one homozygote
Three heterozygotes, one overlapping allele

## 4 alleles

Six combinations of heterozygotes, homozygotes and overlapping alleles

## 3 alleles

Eight combinations of heterozygotes, homozygotes, and overlapping alleles

## 2 alleles

Five combinations of heterozygotes, homozygotes, and overlapping alleles

## 1 allele

All homozygotes, overlapping allele

## Observed profile <br> 4-Person Mixtures

8 alleles

2 alleles
Many combinations

## 1 allele

All homozygotes, overlapping allele

## Four-Person Mixture Studies Summary

## >70\% of 4-person mixtures would NOT be recognized as 4-person mixtures based on allele count

## "On the Threshold of a Dilemma"

- Gill and Buckleton (2010)
- Although most labs use thresholds of some description, this philosophy has always been problematic because there is an inherent illogicality which we call the falling off the cliff effect.

Commentary on: Budowle B, Onorato AJ, Callaghan TF, Della

J Forensic Sci, January 2010, Vol. 55, No. 1 doi: $10.1111 / \mathrm{j} .1556-4029.2009 .01257 . \mathrm{x}$ Available online at: interscience.wiley.com Manna A, Gross AM, Guerrieri RA, Luttman JC, McClure DL. Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework. J Forensic Sci 2009;54(4):810-21.

## "Falling off the Cliff Effect"

- If $T=$ an arbitrary level (e.g., 150 rfu ), an allele of 149 rfu is subject to a different set of guidelines compared with one that is 150 rfu even though they differ by just 1 rfu (Fig. 1).




## Falling off the Cliff vs. Gradual Decline


http://blog.sironaconsulting.com/.a/6a00d8341c761a53ef011168cc5ff3970c-pi

## Gill and Buckleton JFS 55: 265-268 (2010)

- "The purpose of the ISFG DNA commission document was to provide a way forward to demonstrate the use of probabilistic models to circumvent the requirement for a threshold and to safeguard the legitimate interests of defendants."


## Psychedelic Mixtures

## Turn On...

## Tune In...


(Talk about) Drop Out

## Next Issue of FSI-Genetics

Forensic Science International: Genetics xxx (2012) xxx-xxx

## Contents lists available at SciVerse ScienceDirect

Forensic Science International: Genetics
journal homepage: www.elsevier.com/locate/fsig

Editorial
Focus issue-Analysis and biostatistical interpretation of complex and low template DNA samples

# Article in press... 



DNA commission of the International Society of Forensic Genetics: Recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods
P. Gill a,b,* L. Gusmão ${ }^{\text {c }}$, H. Haned ${ }^{\text {d }}$, W.R. Mayr ${ }^{\mathrm{e}}$, N. Morling ${ }^{\text {f }}$, W. Parson ${ }^{\text {g }}$, L. Prieto ${ }^{\text {h }}$. M. Prinz ${ }^{i}$, H. Schneider ${ }^{j}$, P.M. Schneider ${ }^{k}$, B.S. Weir ${ }^{1}$

Suspect


Evidence


$$
L R=\frac{1}{2 p q}
$$

$$
L R=\frac{0}{2 p q}
$$

Suspect


Evidence


$$
\mathrm{LR}=\frac{?}{2 \mathrm{pq}}
$$

"2p"

$$
p^{2}+2 p(1-p)
$$

## Haned et al.

Forensic Science International: Genetics xxx (2012) xxx-xxx


Contents lists available at SciVerse ScienceDirect
Forensic Science International: Genetics
journal homepage: www.elsevier.com/locate/fsig

Exploratory data analysis for the interpretation of low template DNA mixtures
H. Haned ${ }^{\text {a,* }}$, K. Slooten ${ }^{\text {a,b }}$, P. Gill ${ }^{\text {c,d }}$
${ }^{2}$ Netherlands Forensic Institute, Department of Human Biological traces, The Hague, The Netherlands
${ }^{\mathrm{b}}$ VU University Amsterdam, Amsterdam, The Netheriands
${ }^{\text {c }}$ Norwegian institute of Public Health, Oslo, Norway
${ }^{d}$ University of Oslo, Norway

## Mitchell et al.

Forensic Science International: Genetics xxx (2012) $\mathrm{xxx}-\mathrm{xxx}$

Contents lists available at SciVerse ScienceDirect
Forensic Science International: Genetics
journal homepage: www.elsevier.com/locate/fsig

Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in

Adele A. Mitchell ${ }^{*}$, Jeannie Tamariz, Kathleen O'Connell, Nubia Ducasse, Zoran Budimlija, Mechthild Prinz, Theresa Caragine

Department of Forensic Biology. Office of Chief Medical Examiner of The City of New York 421 E 26 th Street, New York, NY 10016, United States

## The Drop-out Model

The interpretation of low level DNA mixtures
Hannah Kelly ${ }^{\text {a,* }}$, Jo-Anne Bright ${ }^{\text {a }}$, James Curran ${ }^{\text {b }}$, John Buckleton ${ }^{\text {a }}$
${ }^{4}$ ESR, PB 92021 Auckland, New Zealand
${ }^{3}$ Deparmment of Statistics, University of Auckand, PB 92019 Auckland, New Zealand

FSI - Genetics 6 (2012) 191-197

## First - Convert Peaks to Alleles


$13,14,14,15$

## Ambiguity in Determining Vectors



## Assume 2 Contributors

Allelic Vectors
13, 13, 14, 15
13, 14, 14, 15
$13,14,15,15$

3 possibilities

## Permutations

- The number of permutations is the number of ways that the alleles can be arranged as pairs.


## Permutations

- An easier way to compute using factorials. $\binom{n}{m_{1}, m_{2}, \ldots m_{l}}=\frac{n!}{m_{1}!m_{2}!, \ldots, m_{!}!}$
$\mathrm{n}=$ total number of alleles at the locus. $m=$ number of times each allele is seen.


## Determine the Permutations

 for this exampleAllelic Vectors

13
14
14
15

## Let's Prove It!

Allelic Vectors
13
14
14
15

13,14 and $14,15=2 a b \times 2 b c=4 a b^{2} c$
13,15 and $14,14=2 a c \times b^{2}=2 a b^{2} c$
14,15 and $13,14=2 b c \times 2 a b=4 a b^{2} c$
14,14 and $13,15=b^{2} \times 2 b c=2 a b^{2} c$
$=12 a b^{2} c$
$=12$

## Assign Allele Designations

- Use "F" as a placeholder to consider alleles that may have dropout.


Assume 2 Contributors
3 peaks - 3 alleles

Allelic Vector 13,14,15,F

## Assign Probability using the F-model

- Calculate the number of permutations using "F" as a placeholder and then drop it from the equation.



## Assign Probability using the F-model

$$
\operatorname{Pr}(13,14,15, F \mid X)=\frac{4!}{1!1!1!1!} \operatorname{Pr}(13,14,15, F \mid X)
$$



# Apply the Sampling Formula (Balding and Nichols 1994) 

## $\frac{x \theta+(1-\theta) p A}{1+(n-1) \theta}$

$x$ = value calculated from the F-model. $p_{a}=$ frequency of the "a" allele.
$\Theta=$ coancestry coefficient ( $\mathrm{F}_{\mathrm{ST}}$ ). $\mathrm{n}=$ number of alleles.

## A Worked Example

$$
\mathrm{POI}=28,30
$$

## 2 peaks - 4 alleles

D21
Assume 2 contributors
Allele 28 = 107 RFU
Allele $30=198$ RFU
ST = 200 RFU

Allelic Vector 28,30,F,F

## Permutations and Probability

$$
\operatorname{Pr}(28,30, F, F \mid 28,30)=
$$

$4!$
—— $\operatorname{Pr}(28,30, \mathrm{~F}, \mathrm{~F} \mid 28,20)$
$1!1!2$ !

$$
=12 \operatorname{Pr}(28,30 \mid 28,30)
$$

## Apply the Sampling Formula (Balding and Nichols 1994)

$$
\begin{array}{cl}
\operatorname{Pr}(A \mid X)=\frac{x \theta+(1-\theta) p_{a}}{1+(n-1) \theta} & \begin{array}{l}
\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hp})=1 \\
\operatorname{Pr}(\mathrm{E} \mid \mathrm{Hd})=12 \operatorname{Pr}(28,30 \mid 28,30)
\end{array} \\
\frac{12\left(\theta(1-\theta) p_{28}\right)\left(\theta+(1-\theta) p_{30}\right)}{(1+\theta)(1+2 \theta)}
\end{array}
$$

$$
L R=1.86
$$

## Kelly et al.

- Other models including the "Q" method and the Unconstrained Combinatorial "UC" method (no peak height info).
- The UC method overestimates the LR and is not appropriate. The " $Q$ " model performs better than the " $F$ " model, but is more mathematically intense...


## The "Q" Model for D21 $(28,30)$

$$
\begin{aligned}
& \text { Alelic vector }(28,30) \\
& \operatorname{Pr}(\mathrm{E} \mid \mathrm{Hp})=1 \\
& 4 \operatorname{Pr}(28,28,28,30 \mid 28,30)+6 \operatorname{Pr}(28,28,30,30 \mid 28,30)+4 \operatorname{Pr}(28,30,30,30 \mid 28,30)+12 \operatorname{Pr}(28,28,30, Q \mid 28,30) \\
& +12 \operatorname{Pr}(28,30,30, Q \mid 28,30) \\
& +12 \operatorname{Pr}(28,30, Q, Q \mid 28,30) \\
& \operatorname{Pr}(\mathrm{E} \mid \mathrm{Hd})=2 \operatorname{Pr}(28,30 \mid 28,30) \times\left[\begin{array}{l}
6-6 \operatorname{Pr}(28 \mid 28,28,30,30)-6 \operatorname{Pr}(30 \mid 28,28,30,30)+2 \operatorname{Pr}(28,28 \mid 28,28,30,30) \\
+2 \operatorname{Pr}(30,30 \mid 28,28,30,30) \\
+3 \operatorname{Pr}(28,30 \mid 28,28,30,30)
\end{array}\right] \\
& \frac{2\left(\theta(1-\theta) p_{2 g}\right)\left(\theta+(1-\theta) p_{20}\right)}{(1+\theta)(1+2 \theta)} \times \\
& {\left[\begin{array}{c}
6-\frac{6\left(2 \theta+(1-\theta) p_{23}\right)}{(1+3 \theta)}-\frac{6\left(2 \theta+(1-\theta) p_{30}\right)}{(1+3 \theta)}+\frac{2\left(2 \theta+(1-\theta) p_{x}\right)\left(3 \theta+(1-\theta) p_{x}\right)}{(1+3 \theta)(1+4 \theta)}+\frac{2\left(2 \theta+(1-\theta) p_{30}\right)\left(3 \theta(1-\theta) p_{30}\right)}{(1+3 \theta)(1+4 \theta)} \\
+\frac{3\left(2 \theta+(1-\theta) p_{2 \theta}\right)\left(2 \theta+(1-\theta) p_{30}\right)}{(1+3 \theta)(1+4 \theta)}
\end{array}\right]}
\end{aligned}
$$

## LR with $\operatorname{Pr}($ Drop-out $)$

Forensic Science International: Genetics 4 (2009) 1-10

## Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Interpreting low template DNA profiles
David J. Balding a.,*, John Buckleton ${ }^{\text {b }}$
${ }^{3}$ Department of Epidemiology and Public Health, Imperial College, St Mary's Campus, Norfolk Place, London W2 IPG, UK ${ }^{\circ}$ ESR Private Bag 92021, Auckland, New Zealand


## 3 person mixture - 1 major, 2 minor



## 3 Person Mixture



$$
\begin{aligned}
& V=13,14 \\
& C P=13,14.2 \\
& S=15,16.2 \\
& \frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}
\end{aligned}
$$



$$
\begin{aligned}
& V=13,14 \\
& C P=13,14.2 \\
& S=15,16.2
\end{aligned}
$$

$$
\operatorname{Pr}(\text { Drop-out })=10 \%
$$

$$
\operatorname{Pr}(\text { Drop-in) }=1 \%
$$

$\mathrm{P}\left(E \mid H_{1}\right)=\operatorname{Pr}($ No Drop-out at 16.2) $\operatorname{Pr}($ Drop-out at 15) $\operatorname{Pr}($ No Drop-in $)$

$$
\begin{array}{lll}
= & 0.90 & 0.10
\end{array} 0.99
$$

## $=0.0891$

## 3 Person Mixture



$$
\begin{aligned}
& V=13,14 \\
& C P=13,14.2 \\
& S=15,16.2
\end{aligned}
$$

$$
\frac{\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{1}\right)}{\mathrm{P}\left(\mathrm{E} \mid \mathrm{H}_{2}\right)}
$$

0.0891

Keith Inman, Norah Rudin and Kirk Lohmueller have modified the Balding program to incorporate your own data for estimating $\operatorname{Pr}($ Drop-out).

## CRIMINALISTICS

Mark W. Perlin, ${ }^{1}$ M.D., Ph.D.; Matthew M. Legler, ${ }^{1}$ B.S.; Cara E. Spencer, ${ }^{1}$ M.S.; Jessica L. Smith, ${ }^{1}$ M.S.; William P. Allan, ${ }^{1}$ M.S.; Jamie L. Belrose, ${ }^{2}$ M.S.; and Barry W. Duceman, ${ }^{3}$ Ph.D.

Validating TrueAllele ${ }^{\circledR}$ DNA Mixture Interpretation*, ${ }^{\dagger}$

- Quantitative computer interpretation using

Markov Chain Monte Carlo testing

- Models peak uncertainty and infers possible genotypes
- Results are presented as the Combined LR



## Monte Carlo



## What is a Markov Chain?

"A mathematical system that undergoes transitions from one state to another, between a finite or countable number of possible states. It is a random process usually characterized as memoryless: the next state depends only on the current state and not on the sequence of events that preceded it."

Andrey Markov

## Is Blackjack a Markov Chain?



Monopoly is a Markov Chain


## Monopoly simulation

- http://www.bewersdorffonline.de/amonopoly/monopoly_m.htm


Higher Prob. of being in jail

## True Allele also uses a Bayesian Analysis of the data



## Bayes' Theorem

$$
\frac{P\left(H_{1} \mid E\right)}{P\left(H_{2} \mid E\right)}=\frac{P\left(H_{1}\right)}{P\left(H_{2}\right)} \cdot \frac{P\left(E \mid H_{1}\right)}{P\left(E \mid H_{2}\right)}
$$

Posterior
Probability
Probability
Likelihood
Ratio

## Prior Prob $=0.5 \quad L R=10,000 / 1$

## Posterior Prob =

Yes - White
$0.5 \times 10,000$ No - Black


## Little Orphan Alien...



The sun'll come out tomorrow
With a $99.98 \%$ probability
tomorrow there'll be sun

## Real-life Example

## Air France Flight 447

- June 1, 2009, Air France Flight 447, (Rio de Janeiro to Paris) with 228 passengers and crew disappeared over the South Atlantic.
- 33 bodies were located from June 6-10, 2009.
- By June 17, 50 bodies had been recovered in two distinct groups more than 50 miles apart.



## Air France Flight 447

- Initial searches conclude at the end of August.
- More searches in 2009 and 2010.
- In July 2010, the US-based search consultancy Metron was asked by BEA (France) to examine the results. Metron uses a Bayesian approach to find the potential crash site.
- http://www.informs.org/ORMS-Today/Public-Articles/August-Volume-38-Number-4/In-Search-of-Air-France-Flight-447




## Air France Flight 447

- January 2011 - Metron published their findings on the BEA website using a Bayesian approach to find the potential crash site.
- Fourth phase initiated in April 2011 - debris field was found within a week. Flight recorders were found in May 2011.
- http://www.informs.org/ORMS-Today/Public-Articles/August-Volume-38-Number-4/In-Search-of-Air-France-Flight-447



## Probabilistic Modeling of TA

| Mathematical Modeling <br> of the Data |
| :---: |

PHR, Mix Ratio, Stutter etc...


| Genotypes | Probability |
| :---: | :---: |
| 9,11 | $76 \%$ |
| 11,11 | $15 \%$ |
| 11,13 | $2 \%$ |
| 8,11 | $2 \%$ |
| 11,12 | $2 \%$ |
| 9,9 | $1 \%$ |
| 9,12 | $<1 \%$ |
| 10,11 | $<1 \%$ |
| 8,12 | $<1 \%$ |
| 8,9 | $<1 \%$ |

## True Allele Software (Cybergenetics)

- We purchased the software in September 2010.
- Three day training at Cybergenetics (Pittsburgh, PA) in October.
- Software runs on a Linux Server with a Mac interface.



# True Allele Casework Workflow 

5 Modules

## Analyze

.fsa files imported
Size Standard check
Allelic Ladder check
Alleles are called

## True Allele Casework Workflow 5 Modules




All Peaks above 10 RFU are considered

## True Allele Casework Workflow 5 Modules

Analyze $\longrightarrow$ Data $\longrightarrow$ Request

State Assumptions 2, 3, 4 unknowns 1 Unk with Victim?
Set Parameters MCMC modeling
Computation (e.g.50K) Degradation?

## True Allele Casework Workflow 5 Modules



## Computation

## Review of One Replicate (of 50K)





## True Allele Casework Workflow 5 Modules

Analyze $\longrightarrow$ Data $\longrightarrow$ Request $\longrightarrow$ Review

## Computation

## Determining the LR for D19S433

Suspect $A=14,16.2$

$$
H_{P}=0.967
$$

Probability
Allele Pair Before Conditioning

| $14,16.2$ |
| :---: |
| 14,14 |
| $13,16.2$ |
| 13,14 |

### 0.967

$\mathrm{LR}=$

## Determining the LR for D19S433

Suspect $A=14,16.2$

$$
H_{P}=0.967
$$

| Allele Pair | Probability Before Conditioning | Genotype <br> Frequency | Probability * Genotype Freq |
| :---: | :---: | :---: | :---: |
| 14, 16.2 | 0.967 | 0.0120 | 0.01164 |
| 14, 14 | 0.003 | 0.0498 | 0.00013 |
| 13, 16.2 | 0.026 | 0.0131 | 0.00034 |
| 13, 14 | 0.001 | 0.1082 | 0.00009 |

### 0.967 <br> $L R=-=79.26 \quad H_{D}$ <br> 0.0122

## Combined LR = 5.6 Quintillion

|  |  |  | Genotype <br> Probability <br> Distribution |  |  | Weighted Likelihood |  | Likelihood Ratio |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | allele pair | Likelihood | Questioned | Reference | Suspect | Numerator | Denominator | LR | $\log (\mathrm{LR})$ |
| locus | x | I(x) | $\mathrm{q}(\mathrm{x})$ | r(x) | $s(x)$ | I(x)*s(x) | $l(x) * r(x)$ |  |  |
| CSF1PO | 11, 12 | 0.686 | 0.778 | 0.1448 | 1 | 0.68615 | 0.1292 | 5.31 | 0.725 |
| D13S317 | 9, 12 | 1 | 1 | 0.0291 | 1 | 0.99952 | 0.02913 | 34.301 | 1.535 |
| D16S539 | 9, 11 | 0.985 | 0.995 | 0.1238 | 1 | 0.98451 | 0.12188 | 8.036 | 0.905 |
| D18S51 | 13, 17 | 0.999 | 1 | 0.0154 | 1 | 0.99915 | 0.01543 | 64.677 | 1.811 |
| D19S433 | 14, 16.2 | 0.967 | 0.948 | 0.012 | 1 | 0.96715 | 0.01222 | 79.143 | 1.898 |
| D21S11 | 28, 30 | 0.968 | 0.98 | 0.0872 | 1 | 0.96809 | 0.08648 | 11.194 | 1.049 |
| D2S1338 | 23, 24 | 0.998 | 1 | 0.0179 | 1 | 0.99831 | 0.01787 | 55.866 | 1.747 |
| D3S1358 | 15, 17 | 0.988 | 0.994 | 0.1224 | 1 | 0.98759 | 0.12084 | 8.14 | 0.911 |
| D5S818 | 11, 11 | 0.451 | 0.394 | 0.0537 | 1 | 0.45103 | 0.07309 | 6.17 | 0.79 |
| D7S820 | 11, 12 | 0.984 | 0.978 | 0.0356 | 1 | 0.98383 | 0.03617 | 27.198 | 1.435 |
| D8S1179 | 13, 14 | 0.203 | 0.9 | 0.1293 | 1 | 0.20267 | 0.02993 | 6.771 | 0.831 |
| FGA | 21, 25 | 0.32 | 0.356 | 0.028 | 1 | 0.31986 | 0.01906 | 16.783 | 1.225 |
| TH01 | 7,7 | 0.887 | 0.985 | 0.1739 | 1 | 0.88661 | 0.15588 | 5.687 | 0.755 |
| TPOX | 8, 8 | 1 | 1 | 0.1375 | 1 | 1 | 0.13746 | 7.275 | 0.862 |
| vWA | 15, 20 | 0.998 | 0.996 | 0.0057 | 1 | 0.99808 | 0.00569 | 174.834 | 2.243 |

## Results

- Results are expressed as logLR values

$$
\begin{aligned}
& \mathrm{LR}=1,000,000=10^{6} \\
& \qquad \begin{array}{l}
\log (\mathrm{LR})=\log 10^{6} \\
\log (\mathrm{LR})=6 * \log 10(1) \\
\log (\mathrm{LR})=6
\end{array}
\end{aligned}
$$

## Review of One Replicate (of 50K)


No Conditioning (3 Unknowns)


## No Conditioning (3 Unknowns)



| locus | allele pair | L | Q | R | 5 | L*S | L*R | LR | $\log (\mathrm{LR})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D19S433 | 13 , 14 | 0.002 | 0.146 | 0.1082 |  |  | 0.00020 |  |  |
|  | 14.2, 16.2 | 0.270 | 0.109 | 0.0044 |  |  | 0.00118 |  |  |
|  | 14 , 14 | 0.002 | 0.093 | 0.0498 |  |  | 0.00008 |  |  |
|  | 13 , 14.2 | 0.017 | 0.088 | 0.0392 |  |  | 0.00068 |  |  |
|  | 14 , 16.2 | 0.013 | 0.081 | 0.0120 | 1 | 0.01295 | 0.00016 |  |  |
|  | 13 , 16.2 | 0.018 | 0.074 | 0.0131 |  |  | 0.00023 |  |  |
|  | 14 , 14.2 | 0.009 | 0.067 | 0.0361 |  |  | 0.00031 |  |  |
|  | 12 , 14 | 0.002 | 0.059 | 0.0498 |  |  | 0.00012 |  |  |
|  | 14 , 15 | 0.001 | 0.038 | 0.0343 |  |  | 0.00002 |  |  |
|  | 13 , 13 | 0.001 | 0.034 | 0.0587 |  |  | 0.00007 |  |  |
|  | 12,13 | 0.002 | 0.029 | 0.0541 |  |  | 0.00010 |  |  |
|  | 13 , 15 | 0.001 | 0.024 | 0.0373 |  |  | 0.00002 |  |  |
|  | $12,16.2$ | 0.017 | 0.021 | 0.0060 |  |  | 0.00010 |  |  |
|  | 12 , 14.2 | 0.013 | 0.020 | 0.0180 |  |  | 0.00023 |  |  |
|  | 14 , 15.2 | 0.001 | 0.018 | 0.0275 |  |  | 0.00003 |  |  |
|  | 15 , 16 | 0.002 | 0.015 | 0.0006 |  |  | 0.00000 |  |  |
|  | 13 , 15.2 | 0.001 | 0.009 | 0.0299 |  |  | 0.00003 |  |  |
|  | $12,15.2$ | 0.003 | 0.009 | 0.0137 |  |  | 0.00004 |  |  |
|  | 14 , 16 | 0.000 | 0.009 | 0.0017 |  |  | 0.00000 |  |  |
|  | 12,12 | 0.004 | 0.009 | 0.0125 |  |  | 0.00004 |  |  |
|  | 12 , 15 | 0.001 | 0.006 | 0.0172 |  |  | 0.00001 |  |  |
|  | 13 , 16 | 0.000 | 0.006 | 0.0019 |  |  | 0.00000 |  |  |
|  | $13,13.2$ | 0.001 | 0.004 | 0.0261 |  |  | 0.00003 |  |  |
|  | 13.2, 14 | 0.001 | 0.003 | 0.0240 |  |  | 0.00002 |  |  |
|  | 13.2, 15 | 0.001 | 0.002 | 0.0083 |  |  | 0.00001 |  |  |
|  | 14 , 18.2 | 0.002 | 0.002 | 0.0017 |  |  | 0.00000 |  |  |
|  | 13 , 19.1 | 0.019 | 0.002 | 0.0000 |  |  | 0.00000 |  |  |
|  | $12,13.2$ | 0.002 | 0.002 | 0.0120 |  |  | 0.00003 |  |  |
|  | 14.2, 16 | 0.001 | 0.002 | 0.0006 |  |  | 0.00000 |  |  |
|  | 12.2, 13 | 0.001 | 0.002 | 0.0168 |  |  | 0.00002 |  |  |
|  | $13,18.2$ | 0.002 | 0.001 | 0.0019 |  |  | 0.00000 |  |  |
|  | 12.2, 14 | 0.001 | 0.001 | 0.0155 |  |  | 0.00001 |  |  |
|  | 14.2, 14.2 | 0.004 | 0.001 | 0.0065 |  |  | 0.00003 |  |  |
|  | 15 , 15 | 0.000 | 0.001 | 0.0059 |  |  | 0.00000 |  |  |
|  | 15 , 15.2 | 0.000 | 0.001 | 0.0095 |  |  | 0.00000 |  |  |
|  | 14,17 | 0.001 | 0.001 | 0.0000 |  |  | 0.00000 |  |  |
|  | $15,16.2$ | 0.000 | 0.001 | 0.0042 |  |  | 0.00000 |  |  |
|  | 15.2, 15.2 | 0.001 | 0.001 | 0.0038 |  |  | 0.00000 |  |  |
|  | 1.1, 14.2 | 0.072 | 0.001 | 0.0097 |  |  | 0.00069 |  |  |
|  |  |  |  |  |  | 0.01295 | 0.00385 |  | . 527 |

## Suspect "A" Genotype

39 probable genotypes

Suspect A $=14,16.2$

$$
H_{P}=0.013
$$

Genotype
Allele Pair Probability Frequency

| 13,14 | 0.002 | 0.1082 |  |
| :---: | :--- | :--- | :--- |
| $14.2,16.2$ | 0.270 | 0.0044 |  |
| 14,14 | 0.002 | 0.0498 |  |
| $13,14.2$ | 0.017 | 0.0392  <br> $14,16.2$ 0.013 | 0.0120  <br> $13,16.2$ 0.018 <br> etc... etc... |
|  | 0.0131 |  |  |
| etc... |  |  |  |
|  | 0.013 |  |  |

## Prob *

GenFreq
0.00020
0.00118
0.00008
0.00068
0.00016
0.00023
etc...
$\mathbf{0 . 0 0 3 8 5}$

$$
L R=\frac{}{0.00385}=3.38
$$

No Conditioning

## Conditioned on Victim



Profile - Combined $\log ($ LR $)$ Suspect A log(LR) $=18.72$ Suspect B $\log (L R)=19.45$

## Exploring the Capabilities

- Degree of Allele Sharing
- Mixture Ratios
- DNA Quantity


## Mixture Data Set

- Mixtures of pristine male and female DNA amplified at a total concentration of $1.0 \mathrm{ng} / \mu \mathrm{L}$ using Identifiler (standard conditions).
- Mixture ratios ranged from 90:10, 80:20, 70:30 60:40, 50:50, 40:60, 30:70, 20:80, and 10:90
- Each sample was amplified twice.


## Mixture Data Set

- Three different combinations:


Virtual MixtureMaker - http://www.cstl.nist.gov/strbase/software.htm

## Match Score in Duplicate Runs



## Match Score in Duplicate Runs



## Match Score in Duplicate Runs




## 075820 <br> CSFIPO <br>  <br> 10:90 minor contributor <br> 

## Exploring the Capabilities

- Degree of Allele Sharing
- Mixture Ratios
- DNA Quantity


## Identifiler

125 pg total DNA

Peaks below stochastic threshold




AT $=30 \mathrm{RFU}$
ST = 150 RFU
Stutter filter off
$y$-axis
zoom to 100 RFU

## D8S1179 <br> "True Genotypes"



$$
\begin{aligned}
& A=13,16 \\
& B=11,13 \\
& C=14,15
\end{aligned}
$$

3 person Mixture - No Conditioning
Major Contributor $\approx 83$ pg input DNA
2 Minor Contributors $\approx 21$ pg input DNA



## Results for Contributor A (male)

|  |  | Probability | Genotype |  | $\mathbf{H}_{\mathbf{p}}$ | $\mathbf{H}_{\mathbf{d}}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Locus | Allele Pair | Likelihood | Frequency | Suspect | Numerator | Denominator | LR |
| CSF1PO | 10,11 | 0.572 | 0.1292 |  |  | 0.07395 |  |
|  | 11,12 | 0.306 | 0.2133 | 1 | 0.30563 | 0.0652 |  |
|  | 10,12 | 0.12 | 0.1547 |  |  | 0.01861 |  |
|  |  |  |  |  | 0.30563 | 0.15791 | 1.935 |
|  |  |  |  |  |  |  |  |
| D13S317 | 11,11 | 1 | 0.1149 | 1 | 1 | 0.11488 | 8.704 |
|  |  |  |  |  |  |  |  |
| D8S1179 | 13,16 | 0.998 | 0.0199 | 1 | 0.99786 | 0.0199 | 49.668 |

The match rarity between the evidence and suspect is 1.21 quintillion

## Results for Contributor B (female)

|  |  | Probability | Genotype |  | $\mathbf{H}_{\mathbf{p}}$ | $\mathbf{H}_{\mathbf{d}}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Locus | Allele Pair | Likelihood | Frequency | Suspect | Numerator | Denominator | LR |
| D8S1179 | 11,13 | 0.073 | 0.0498 | 1 | 0.07338 | 0.00366 |  |
|  | 11,14 | 0.034 | 0.0271 |  |  | 0.00092 |  |
|  | 13,14 | 0.006 | 0.0996 |  |  | 0.00065 |  |
|  | 12,14 | 0.011 | 0.0606 |  |  | 0.00068 |  |
|  | 12,13 | 0.005 | 0.1115 |  |  | 0.0006 |  |
|  | 11,12 | 0.018 | 0.0303 |  |  | 0.00054 |  |
|  | 14,14 | 0.004 | 0.0271 |  |  | 0.00012 |  |
|  | 13,13 | 0.003 | 0.0916 |  |  | 0.00031 |  |
|  | 14,16 | 0.003 | 0.0108 |  |  | 0.00003 |  |
|  | 14,15 | 0.001 | 0.0379 |  |  | 0.00003 |  |
|  |  |  |  |  |  |  |  |
|  | etc... |  |  |  |  |  |  |

The match rarity between the evidence and
suspect is 1.43 million

## Results for Contributor C (male)

|  |  | Probability | Genotype |  | $\mathbf{H}_{\mathbf{p}}$ | $\mathbf{H}_{\mathbf{d}}$ |  |
| :--- | ---: | ---: | ---: | :--- | ---: | ---: | ---: |
| Locus | Allele Pair | Likelihood | Frequency | Suspect | Numerator | Denominator | LR |
| D8S1179 | 11,13 | 0.056 | 0.0498 |  |  | 0.00279 |  |
|  | 13,14 | 0.007 | 0.0996 |  |  | 0.00066 |  |
|  | 12,14 | 0.011 | 0.0606 |  |  | 0.00068 |  |
|  | 11,14 | 0.021 | 0.0271 |  |  | 0.00056 |  |
|  | 12,13 | 0.006 | 0.1115 |  |  | 0.00066 |  |
|  | 14,14 | 0.005 | 0.0271 |  |  | 0.00013 |  |
|  | etc... | etc... | etc... |  |  | etc... |  |
|  | 14,15 | 0.001 | 0.0379 | 1 | 0.00056 | 0.00002 |  |
|  | 12,15 | 0.001 | 0.0424 |  |  | 0.00003 |  |
|  | etc... | etc... | etc... |  |  |  | etc... |
|  | 0 | 0.0227 |  |  | 0.00001 |  |  |
|  |  |  |  |  | 0.00056 | 0.00665 | $\mathbf{0 . 0 8 4}$ |

The match rarity between the evidence and suspect is 9.16 thousand

## Contributor B (gray)

 (16\%) (18\%)Conditioned on the Victim


## The Power of Conditioning



## The Power of Conditioning

|  | LR (no conditioning, 3unk) |
| :--- | :---: |
| Contributor A | 1.21 Quintillion |
| Contributor B (victim) | 1.43 Million |
| Contributor C | 9.16 Thousand |


|  | LR (conditioned on victim + 2unk) |
| :--- | :---: |
| Contributor A | 1.32 Quintillion |
| Contributor B (victim) | 2.19 Million |
| Contributor C | 59.8 Thousand |
|  | 个 |

Ranged from 1.13 to 800 K

## Summary

- True Allele utilizes probabilistic genotyping and makes better use of the data than the RMNE approach.
- However, the software is computer intensive. On our 4 processor system, it can take 12-16 hours to run up to four 3-person mixture samples.


## Summary

- Allele Sharing: Stacking of alleles due to sharing creates more uncertainty.
- Mixture Ratio: With "distance" between the two contributors, there is greater certainty. Generally, True Allele performs better than RMNE and the classic LR with low level contributors.


## Summary

- DNA Quantity: Generally, with high DNA signal, replicates runs on True Allele are very reproducible.
- However, with low DNA signal, higher levels of uncertainty are observed (as expected).
- There is a need to determine an appropriate threshold for an inclusion $\log (\mathrm{LR})$.


## Summary

- We need to move away from the interpretation of mixtures from an "allele-centric" point of view.
- Methods to incorporate probability will be necessary as we make this transition and confront the issues of low-level profiles with drop-out.
- "Just as logic is reasoning applied to truth and falsity, probability is reasoning with uncertainty"
-Dennis Lindley


## Summary

- The LR is a method to evaluate evidence that can overcome many of the limitations we are facing today. ISFG Recommendations for incorporating drop-out are in press.
- This will require (obviously) software solutions... however, we need to better understand and be able to explain the statistics as a community.


## Thank You!

Our team publications and presentations are available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Funding from the National Institute of Justice (NIJ) through NIST Office of Law Enforcement Standards


## Questions?



